%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); colors = colororder; addpath('./mat/'); addpath('./src/'); %% Load Data leg_sweep = load(sprintf('frf_data_leg_%i_sweep.mat', 1), 't', 'Va', 'Vs', 'de', 'da'); leg_noise_hf = load(sprintf('frf_data_leg_%i_noise_hf.mat', 1), 't', 'Va', 'Vs', 'de', 'da'); %% Time vector t = leg_sweep.t - leg_sweep.t(1) ; % Time vector [s] %% Sampling frequency/time Ts = (t(end) - t(1))/(length(t)-1); % Sampling Time [s] Fs = 1/Ts; % Sampling Frequency [Hz] win = hanning(ceil(0.5*Fs)); % Hannning Windows % Only used to have the frequency vector "f" [~, f] = tfestimate(leg_sweep.Va, leg_sweep.de, win, [], [], 1/Ts); i_lf = f <= 350; % Indices used for the low frequency i_hf = f > 350; % Indices used for the low frequency %% Compute the coherence for both excitation signals [int_coh_sweep, ~] = mscohere(leg_sweep.Va, leg_sweep.da, win, [], [], 1/Ts); [int_coh_noise_hf, ~] = mscohere(leg_noise_hf.Va, leg_noise_hf.da, win, [], [], 1/Ts); %% Combine the coherence int_coh = [int_coh_sweep(i_lf); int_coh_noise_hf(i_hf)]; %% Plot the coherence figure; hold on; plot(f, int_coh(:, 1), 'k-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Coherence [-]'); xlim([10, 2e3]); ylim([0, 1]); %% Compute FRF function from Va to da [frf_sweep, ~] = tfestimate(leg_sweep.Va, leg_sweep.da, win, [], [], 1/Ts); [frf_noise_hf, ~] = tfestimate(leg_noise_hf.Va, leg_noise_hf.da, win, [], [], 1/Ts); %% Combine the FRF int_frf = [frf_sweep(i_lf); frf_noise_hf(i_hf)]; %% Plot the measured FRF figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(int_frf), 'k-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-9, 1e-3]); ax2 = nexttile; hold on; plot(f, 180/pi*angle(int_frf), 'k-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); %% Compute the coherence for both excitation signals [iff_coh_sweep, ~] = mscohere(leg_sweep.Va, leg_sweep.Vs, win, [], [], 1/Ts); [iff_coh_noise_hf, ~] = mscohere(leg_noise_hf.Va, leg_noise_hf.Vs, win, [], [], 1/Ts); %% Combine the coherence iff_coh = [iff_coh_sweep(i_lf); iff_coh_noise_hf(i_hf)]; %% Plot the coherence figure; hold on; plot(f, iff_coh, 'k-'); hold off; xlabel('Frequency [Hz]'); ylabel('Coherence [-]'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlim([10, 2e3]); ylim([0, 1]); %% Compute the FRF [frf_sweep, ~] = tfestimate(leg_sweep.Va, leg_sweep.Vs, win, [], [], 1/Ts); [frf_noise_hf, ~] = tfestimate(leg_noise_hf.Va, leg_noise_hf.Vs, win, [], [], 1/Ts); %% Combine the FRF iff_frf = [frf_sweep(i_lf); frf_noise_hf(i_hf)]; %% Plot the measured FRF figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(iff_frf), 'k-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-2, 1e2]); ax2 = nexttile; hold on; plot(f, 180/pi*angle(iff_frf), 'k-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); %% Load data leg_enc_sweep = load(sprintf('frf_data_leg_coder_badly_align_%i_noise.mat', 1), 't', 'Va', 'Vs', 'de', 'da'); leg_enc_noise_hf = load(sprintf('frf_data_leg_coder_badly_align_%i_noise_hf.mat', 1), 't', 'Va', 'Vs', 'de', 'da'); %% Compute the coherence for both excitation signals [int_coh_sweep, ~] = mscohere(leg_enc_sweep.Va, leg_enc_sweep.da, win, [], [], 1/Ts); [int_coh_noise_hf, ~] = mscohere(leg_enc_noise_hf.Va, leg_enc_noise_hf.da, win, [], [], 1/Ts); %% Combine the coherinte int_coh = [int_coh_sweep(i_lf); int_coh_noise_hf(i_hf)]; %% Plot the coherence figure; hold on; plot(f, int_coh(:, 1), 'k-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Coherence [-]'); xlim([10, 2e3]); ylim([0, 1]); %% Compute FRF function from Va to da [frf_sweep, ~] = tfestimate(leg_enc_sweep.Va, leg_enc_sweep.da, win, [], [], 1/Ts); [frf_noise_hf, ~] = tfestimate(leg_enc_noise_hf.Va, leg_enc_noise_hf.da, win, [], [], 1/Ts); %% Combine the FRF int_with_enc_frf = [frf_sweep(i_lf); frf_noise_hf(i_hf)]; %% Plot the FRF from Va to de figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(int_with_enc_frf), 'k-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_a/V_a$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-7, 1e-3]); ax2 = nexttile; hold on; plot(f, 180/pi*angle(int_with_enc_frf), 'k-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); %% Plot the FRF from Va to da with and without the encoder figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(int_with_enc_frf), '-', 'DisplayName', 'With encoder'); plot(f, abs(int_frf), '-', 'DisplayName', 'Without encoder'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_a/V_a$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-7, 1e-3]); legend('location', 'northeast') ax2 = nexttile; hold on; plot(f, 180/pi*angle(int_with_enc_frf), '-'); plot(f, 180/pi*angle(int_frf), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); %% Compute the coherence for both excitation signals [enc_coh_sweep, ~] = mscohere(leg_enc_sweep.Va, leg_enc_sweep.de, win, [], [], 1/Ts); [enc_coh_noise_hf, ~] = mscohere(leg_enc_noise_hf.Va, leg_enc_noise_hf.de, win, [], [], 1/Ts); %% Combine the coherence enc_coh = [enc_coh_sweep(i_lf); enc_coh_noise_hf(i_hf)]; %% Plot the coherence figure; hold on; plot(f, enc_coh(:, 1), 'k-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Coherence [-]'); xlim([10, 2e3]); ylim([0, 1]); %% Compute FRF function from Va to da [frf_sweep, ~] = tfestimate(leg_enc_sweep.Va, leg_enc_sweep.de, win, [], [], 1/Ts); [frf_noise_hf, ~] = tfestimate(leg_enc_noise_hf.Va, leg_enc_noise_hf.de, win, [], [], 1/Ts); %% Combine the FRF enc_frf = [frf_sweep(i_lf); frf_noise_hf(i_hf)]; %% Plot the FRF from Va to de figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(enc_frf), 'k-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-7, 1e-3]); ax2 = nexttile; hold on; plot(f, 180/pi*angle(enc_frf), 'k-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(enc_frf), 'DisplayName', 'Encoder'); plot(f, abs(int_with_enc_frf), 'DisplayName', 'Interferometer'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d/V_a$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2); ylim([1e-8, 1e-3]); ax2 = nexttile; hold on; plot(f, 180/pi*angle(enc_frf)); plot(f, 180/pi*angle(int_with_enc_frf)); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); %% Transfer function from Vs to de with indicated resonances figure; hold on; plot(f, abs(enc_frf), 'k-'); text(93, 4e-4, {'93Hz'}, 'VerticalAlignment','bottom','HorizontalAlignment','center') text(200, 1.3e-4,{'197Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center') text(300, 4e-6, {'290Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center') text(400, 1.4e-6,{'376Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_e/V_a$ [m/V]'); xlabel('Frequency [Hz]'); hold off; ylim([1e-7, 1e-3]); xlim([10, 2e3]); %% Compute the coherence for both excitation signals [iff_coh_sweep, ~] = mscohere(leg_enc_sweep.Va, leg_enc_sweep.Vs, win, [], [], 1/Ts); [iff_coh_noise_hf, ~] = mscohere(leg_enc_noise_hf.Va, leg_enc_noise_hf.Vs, win, [], [], 1/Ts); %% Combine the coherence iff_coh = [iff_coh_sweep(i_lf); iff_coh_noise_hf(i_hf)]; %% Plot the coherence figure; hold on; plot(f, iff_coh, 'k-'); hold off; xlabel('Frequency [Hz]'); ylabel('Coherence [-]'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlim([10, 2e3]); ylim([0, 1]); %% Compute FRF function from Va to da [frf_sweep, ~] = tfestimate(leg_enc_sweep.Va, leg_enc_sweep.Vs, win, [], [], 1/Ts); [frf_noise_hf, ~] = tfestimate(leg_enc_noise_hf.Va, leg_enc_noise_hf.Vs, win, [], [], 1/Ts); %% Combine the FRF iff_with_enc_frf = [frf_sweep(i_lf); frf_noise_hf(i_hf)]; %% Plot FRF of the transfer function from Va to Vs figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(iff_with_enc_frf), 'k-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-2, 1e2]); ax2 = nexttile; hold on; plot(f, 180/pi*angle(iff_with_enc_frf), 'k'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); %% Compare the IFF plant with and without the encoders figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(iff_with_enc_frf), 'DisplayName', 'With Encoder'); plot(f, abs(iff_frf), 'DisplayName', 'Without Encoder'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; legend('location', 'northeast', 'FontSize', 8); ylim([1e-2, 1e2]); ax2 = nexttile; hold on; plot(f, 180/pi*angle(iff_with_enc_frf)); plot(f, 180/pi*angle(iff_frf)); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]);