diff --git a/figs/apa_meas_k_time.pdf b/figs/apa_meas_k_time.pdf index 335a9f3..3f5d6f9 100644 Binary files a/figs/apa_meas_k_time.pdf and b/figs/apa_meas_k_time.pdf differ diff --git a/figs/frf_dvf_plant_coh.pdf b/figs/frf_dvf_plant_coh.pdf index 8ffd3eb..62bbaff 100644 Binary files a/figs/frf_dvf_plant_coh.pdf and b/figs/frf_dvf_plant_coh.pdf differ diff --git a/figs/frf_dvf_plant_tf.pdf b/figs/frf_dvf_plant_tf.pdf index 666c11f..2bffaec 100644 Binary files a/figs/frf_dvf_plant_tf.pdf and b/figs/frf_dvf_plant_tf.pdf differ diff --git a/figs/frf_dvf_zoom_res_plant_tf.pdf b/figs/frf_dvf_zoom_res_plant_tf.pdf index 2dd2d57..97f5d19 100644 Binary files a/figs/frf_dvf_zoom_res_plant_tf.pdf and b/figs/frf_dvf_zoom_res_plant_tf.pdf differ diff --git a/figs/frf_dvf_zoom_res_plant_tf.png b/figs/frf_dvf_zoom_res_plant_tf.png index 7efce63..f1984c9 100644 Binary files a/figs/frf_dvf_zoom_res_plant_tf.png and b/figs/frf_dvf_zoom_res_plant_tf.png differ diff --git a/figs/frf_iff_plant_coh.pdf b/figs/frf_iff_plant_coh.pdf index 79e3b08..99fe7e2 100644 Binary files a/figs/frf_iff_plant_coh.pdf and b/figs/frf_iff_plant_coh.pdf differ diff --git a/figs/frf_iff_plant_tf.pdf b/figs/frf_iff_plant_tf.pdf index 4057e49..51b8568 100644 Binary files a/figs/frf_iff_plant_tf.pdf and b/figs/frf_iff_plant_tf.pdf differ diff --git a/figs/frf_iff_plant_tf.png b/figs/frf_iff_plant_tf.png index 4f309ff..322d03d 100644 Binary files a/figs/frf_iff_plant_tf.png and b/figs/frf_iff_plant_tf.png differ diff --git a/test-bench-apa300ml.org b/test-bench-apa300ml.org index 907ae21..a27da87 100644 --- a/test-bench-apa300ml.org +++ b/test-bench-apa300ml.org @@ -1863,7 +1863,7 @@ We get the frequency vector that will be the same for all the frequency domain a #+end_src *** FRF Identification - DVF -In this section, the dynamics from $V_a$ to $d_e$ is identified. +In this section, the dynamics from excitation voltage $V_a$ to encoder measured displacement $d_e$ is identified. We compute the coherence for 2nd and 3rd identification: #+begin_src matlab @@ -1931,7 +1931,6 @@ end #+end_src The obtained transfer functions are shown in Figure [[fig:frf_dvf_plant_tf]]. - They are all superimposed except for the APA7. #+begin_question @@ -1943,10 +1942,6 @@ The encoder seems fine (it measured the same as the Interferometer). Maybe it could be due to the amplifier? #+end_question -#+begin_question -Why is there a double resonance at around 94Hz? -#+end_question - #+begin_src matlab :exports none figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); @@ -1991,6 +1986,15 @@ exportFig('figs/frf_dvf_plant_tf.pdf', 'width', 'wide', 'height', 'tall'); #+RESULTS: [[file:figs/frf_dvf_plant_tf.png]] +A zoom on the main resonance is shown in Figure [[fig:frf_dvf_zoom_res_plant_tf]]. +It is clear that expect for the APA 7, the response around the resonances are well matching for all the APA. + +It is also clear that there is not a single resonance but two resonances, a first one at 95Hz and a second one at 105Hz. + +#+begin_question +Why is there a double resonance at around 94Hz? +#+end_question + #+begin_src matlab :exports none figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); @@ -2018,6 +2022,7 @@ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); +ylim([-10, 180]); linkaxes([ax1,ax2],'x'); xlim([80, 120]); @@ -2128,7 +2133,7 @@ hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; -yticks(-360:90:360); +yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]);