diff --git a/doc/DS_LCR-800_Series_V2_E.pdf b/doc/DS_LCR-800_Series_V2_E.pdf new file mode 100644 index 0000000..3984577 Binary files /dev/null and b/doc/DS_LCR-800_Series_V2_E.pdf differ diff --git a/figs/IMG_20210224_143500.jpg b/figs/IMG_20210224_143500.jpg index b702469..4c71823 100644 Binary files a/figs/IMG_20210224_143500.jpg and b/figs/IMG_20210224_143500.jpg differ diff --git a/figs/IMG_20210224_143505.jpg b/figs/IMG_20210224_143505.jpg index ada04fc..8eabfc5 100644 Binary files a/figs/IMG_20210224_143505.jpg and b/figs/IMG_20210224_143505.jpg differ diff --git a/figs/IMG_20210224_143809.jpg b/figs/IMG_20210224_143809.jpg index e4bb207..3c03f3b 100644 Binary files a/figs/IMG_20210224_143809.jpg and b/figs/IMG_20210224_143809.jpg differ diff --git a/figs/IMG_20210312_120337.jpg b/figs/IMG_20210312_120337.jpg new file mode 100644 index 0000000..5951b60 Binary files /dev/null and b/figs/IMG_20210312_120337.jpg differ diff --git a/matlab/mat/meas_stiff_apa_1_x.mat b/matlab/mat/meas_stiff_apa_1_x.mat new file mode 100644 index 0000000..bfce3f0 Binary files /dev/null and b/matlab/mat/meas_stiff_apa_1_x.mat differ diff --git a/matlab/mat/meas_stiff_apa_2_x.mat b/matlab/mat/meas_stiff_apa_2_x.mat new file mode 100644 index 0000000..5401227 Binary files /dev/null and b/matlab/mat/meas_stiff_apa_2_x.mat differ diff --git a/test-bench-apa300ml.html b/test-bench-apa300ml.html index 82fbf1e..1b5ea75 100644 --- a/test-bench-apa300ml.html +++ b/test-bench-apa300ml.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> - + Amplifier Piezoelectric Actuator APA300ML - Test Bench @@ -39,28 +39,33 @@

Table of Contents

@@ -85,21 +90,21 @@ This include: -
+

apa300ML.png

Figure 1: Picture of the APA300ML

-
-

1 Model of an Amplified Piezoelectric Actuator and Sensor

+
+

1 Model of an Amplified Piezoelectric Actuator and Sensor

-Consider a schematic of the Amplified Piezoelectric Actuator in Figure 2. +Consider a schematic of the Amplified Piezoelectric Actuator in Figure 2.

-
+

apa_model_schematic.png

Figure 2: Amplified Piezoelectric Actuator Schematic

@@ -124,11 +129,11 @@ We wish here to experimental measure \(g_a\) and \(g_s\).

-The block-diagram model of the piezoelectric actuator is then as shown in Figure 3. +The block-diagram model of the piezoelectric actuator is then as shown in Figure 3.

-
+

apa-model-simscape-schematic.png

Figure 3: Model of the APA with Simscape/Simulink

@@ -136,22 +141,22 @@ The block-diagram model of the piezoelectric actuator is then as shown in Figure
-
-

2 Geometrical Measurements

+
+

2 Geometrical Measurements

-
+

IMG_20210224_143500.jpg

Figure 4: Received APA

-
-

2.1 Measurement Setup

+
+

2.1 Measurement Setup

-
+

IMG_20210224_143809.jpg

Figure 5: Measurement Setup

@@ -159,8 +164,8 @@ The block-diagram model of the piezoelectric actuator is then as shown in Figure
-
-

2.2 Measurement Results

+
+

2.2 Measurement Results

Height (Z) measurements: @@ -202,7 +207,7 @@ pos = [[-L/2

- +
@@ -247,15 +252,173 @@ pos = [[-L/2 -
-

3 Electrical Measurements

+
+

3 Electrical Measurements

+
+
+

+The capacitance of the stacks is measure with the LCR-800 Meter (doc) +

+
-
-

4 Test-Bench Description

+
+

IMG_20210312_120337.jpg +

+

Figure 6: LCR Meter used for the measurements

+
+ +

+The excitation frequency is set to be 1kHz. +

+ +
Table 1: Estimated flatness
+ + +++ ++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 2: Capacitance measured with the LCR meter. The excitation signal is a sinus at 1kHz
APA NumberSensor StackActuator Stacks
15.1010.03
24.999.85
31.725.18
44.949.82
54.909.66
64.999.91
74.859.85
+ +
+

+There is clearly a problem with APA300ML number 3 +

+ +
+
+
+ +
+

4 Stiffness measurement

-
+
+
+

4.1 APA test

+
+
+
load('meas_stiff_apa_1_x.mat', 't', 'F', 'd');
+
+
+ +
+
figure;
+plot(t, F)
+
+
+ +
+
%% Automatic Zero of the force
+F = F - mean(F(t > 0.1 & t < 0.3));
+
+%% Start measurement at t = 0.2 s
+d = d(t > 0.2);
+F = F(t > 0.2);
+t = t(t > 0.2); t = t - t(1);
+
+
+ +
+
i_l_start = find(F > 0.3, 1, 'first');
+[~, i_l_stop] = max(F);
+
+
+ +
+
F_l = F(i_l_start:i_l_stop);
+d_l = d(i_l_start:i_l_stop);
+
+
+ +
+
fit_l = polyfit(F_l, d_l, 1);
+
+% %% Reset displacement based on fit
+% d = d - fit_l(2);
+% fit_s(2) = fit_s(2) - fit_l(2);
+% fit_l(2) = 0;
+
+% %% Estimated Stroke
+% F_max = fit_s(2)/(fit_l(1) - fit_s(1));
+% d_max = fit_l(1)*F_max;
+
+
+ +
+
h^2/fit_l(1)
+
+
+ +
+
figure;
+hold on;
+plot(F,d,'k')
+plot(F_l, d_l)
+plot(F_l, F_l*fit_l(1) + fit_l(2), '--')
+
+
+
+
+
+
+

5 Test-Bench Description

+
+

Here are the documentation of the equipment used for this test bench:

@@ -270,21 +433,21 @@ Here are the documentation of the equipment used for this test bench:
-
+

test_bench_apa_alone.png

-

Figure 6: Schematic of the Test Bench

+

Figure 7: Schematic of the Test Bench

-
-

5 Measurement Procedure

-
+
+

6 Measurement Procedure

+
-
-

5.1 Stroke Measurement

-
+
+

6.1 Stroke Measurement

+

Using the PD200 amplifier, output a voltage: \[ V_a = 65 + 85 \sin(2\pi \cdot t) \] @@ -311,9 +474,9 @@ Conclude on the obtained stroke.

-
-

5.2 Stiffness Measurement

-
+
+

6.2 Stiffness Measurement

+

Add some (known) weight \(\delta m g\) on the suspended mass and measure the deflection \(\delta d\). This can be tested when the piezoelectric stacks are open-circuit. @@ -332,9 +495,9 @@ Then the obtained stiffness is:

-
-

5.3 Hysteresis measurement

-
+
+

6.3 Hysteresis measurement

+

Supply a quasi static sinusoidal excitation \(V_a\) at different voltages.

@@ -352,17 +515,17 @@ Then, \(d\) is plotted as a function of \(V_a\) for all the amplitudes.

-
+

expected_hysteresis.png

-

Figure 7: Expected Hysteresis (poel10_explor_activ_hard_mount_vibrat)

+

Figure 8: Expected Hysteresis (poel10_explor_activ_hard_mount_vibrat)

-
-

5.4 Piezoelectric Actuator Constant

-
+
+

6.4 Piezoelectric Actuator Constant

+

Using the measurement test-bench, it is rather easy the determine the static gain between the applied voltage \(V_a\) to the induced displacement \(d\). Use a quasi static (1Hz) excitation signal \(V_a\) on the piezoelectric stack and measure the vertical displacement \(d\). @@ -388,9 +551,9 @@ From the two gains, it is then easy to determine \(g_a\):

-
-

5.5 Piezoelectric Sensor Constant

-
+
+

6.5 Piezoelectric Sensor Constant

+

From a quasi static excitation of the piezoelectric stack, measure the gain from \(V_a\) to \(V_s\):

@@ -428,18 +591,18 @@ This external force can be some weight added, or a piezo in parallel.
-
-

5.6 Capacitance Measurement

-
+
+

6.6 Capacitance Measurement

+

Measure the capacitance of the 3 stacks individually using a precise multi-meter.

-
-

5.7 Dynamical Behavior

-
+
+

6.7 Dynamical Behavior

+

Perform a system identification from \(V_a\) to the measured displacement \(d\) by the interferometer and by the encoder, and to the generated voltage \(V_s\).

@@ -454,9 +617,9 @@ This can also be performed with and without the encoder fixed to the APA.
-
-

5.8 Compare the results obtained for all 7 APA300ML

-
+
+

6.8 Compare the results obtained for all 7 APA300ML

+

Compare all the obtained parameters for all the test APA.

@@ -464,8 +627,8 @@ Compare all the obtained parameters for all the test APA.
-
-

6 Measurement Results

+
+

7 Measurement Results

Bibliography

@@ -475,7 +638,7 @@ Compare all the obtained parameters for all the test APA.

Author: Dehaeze Thomas

-

Created: 2021-03-01 lun. 09:17

+

Created: 2021-03-15 lun. 11:35

diff --git a/test-bench-apa300ml.org b/test-bench-apa300ml.org index 63838ec..21a7589 100644 --- a/test-bench-apa300ml.org +++ b/test-bench-apa300ml.org @@ -193,7 +193,90 @@ data2orgtable(1e6*apa_d', {}, {'Flatness [um]'}, ' %.1f '); * Electrical Measurements +#+begin_note +The capacitance of the stacks is measure with the [[https://www.gwinstek.com/en-global/products/detail/LCR-800][LCR-800 Meter]] ([[file:doc/DS_LCR-800_Series_V2_E.pdf][doc]]) +#+end_note +#+name: fig:LCR_meter +#+caption: LCR Meter used for the measurements +#+attr_latex: :width 0.9\linewidth +[[file:figs/IMG_20210312_120337.jpg]] + +The excitation frequency is set to be 1kHz. + +#+name: tab:apa300ml_capacitance +#+caption: Capacitance measured with the LCR meter. The excitation signal is a sinus at 1kHz +#+attr_latex: :environment tabularx :width 0.6\linewidth :align lcc +#+attr_latex: :center t :booktabs t :float t +| *APA Number* | *Sensor Stack* | *Actuator Stacks* | +|--------------+----------------+-------------------| +| 1 | 5.10 | 10.03 | +| 2 | 4.99 | 9.85 | +| 3 | 1.72 | 5.18 | +| 4 | 4.94 | 9.82 | +| 5 | 4.90 | 9.66 | +| 6 | 4.99 | 9.91 | +| 7 | 4.85 | 9.85 | + +#+begin_warning +There is clearly a problem with APA300ML number 3 +#+end_warning + +* Stiffness measurement +** APA test +#+begin_src matlab +load('meas_stiff_apa_1_x.mat', 't', 'F', 'd'); +#+end_src + +#+begin_src matlab +figure; +plot(t, F) +#+end_src + +#+begin_src matlab +%% Automatic Zero of the force +F = F - mean(F(t > 0.1 & t < 0.3)); + +%% Start measurement at t = 0.2 s +d = d(t > 0.2); +F = F(t > 0.2); +t = t(t > 0.2); t = t - t(1); +#+end_src + +#+begin_src matlab +i_l_start = find(F > 0.3, 1, 'first'); +[~, i_l_stop] = max(F); +#+end_src + +#+begin_src matlab +F_l = F(i_l_start:i_l_stop); +d_l = d(i_l_start:i_l_stop); +#+end_src + +#+begin_src matlab +fit_l = polyfit(F_l, d_l, 1); + +% %% Reset displacement based on fit +% d = d - fit_l(2); +% fit_s(2) = fit_s(2) - fit_l(2); +% fit_l(2) = 0; + +% %% Estimated Stroke +% F_max = fit_s(2)/(fit_l(1) - fit_s(1)); +% d_max = fit_l(1)*F_max; +#+end_src + +#+begin_src matlab +h^2/fit_l(1) +#+end_src + +#+begin_src matlab +figure; +hold on; +plot(F,d,'k') +plot(F_l, d_l) +plot(F_l, F_l*fit_l(1) + fit_l(2), '--') +#+end_src * Test-Bench Description #+begin_note diff --git a/test-bench-apa300ml.pdf b/test-bench-apa300ml.pdf index 15d5930..d3ed2de 100644 Binary files a/test-bench-apa300ml.pdf and b/test-bench-apa300ml.pdf differ