#+TITLE: Test Bench APA95ML :DRAWER: #+STARTUP: overview #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ../index.html #+HTML_LINK_UP: ../index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_MATHJAX: align: center tagside: right font: TeX #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :tangle no #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:shell :eval no-export #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results raw replace :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports both #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs :END: * Introduction :ignore: #+name: fig:setup_picture #+caption: Picture of the Setup [[file:figs/setup_picture.png]] #+name: fig:setup_zoom #+caption: Zoom on the APA [[file:figs/setup_zoom.png]] * Setup :PROPERTIES: :header-args:matlab+: :tangle matlab/setup_experiment.m :header-args:matlab+: :comments org :mkdirp yes :END: ** Parameters #+begin_src matlab Ts = 1e-4; #+end_src ** Filter White Noise #+begin_src matlab Glpf = 1/(1 + s/2/pi/500); Gz = c2d(Glpf, Ts, 'tustin'); #+end_src * Run Experiment and Save Data :PROPERTIES: :header-args:matlab+: :tangle matlab/run_experiment.m :header-args:matlab+: :comments org :mkdirp yes :END: ** Load Data #+begin_src matlab data = SimulinkRealTime.utils.getFileScopeData('data/apa95ml.dat').data; #+end_src ** Save Data #+begin_src matlab u = data(:, 1); % Input Voltage [V] y = data(:, 2); % Output Displacement [m] t = data(:, 3); % Time [s] #+end_src #+begin_src matlab save('./mat/huddle_test.mat', 't', 'u', 'y', 'Glpf'); #+end_src * Huddle Test :PROPERTIES: :header-args:matlab+: :tangle matlab/huddle_test.m :header-args:matlab+: :comments org :mkdirp yes :END: ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Load Data :noexport: #+begin_src matlab load('./mat/huddle_test.mat', 't', 'y'); #+end_src #+begin_src matlab y = y - mean(y(1000:end)); #+end_src ** Time Domain Data #+begin_src matlab :exports none figure; plot(t(1000:end), y(1000:end)) ylabel('Output Displacement [m]'); xlabel('Time [s]'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/huddle_test_time_domain.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:huddle_test_time_domain #+caption: Measurement of the Mass displacement during Huddle Test #+RESULTS: [[file:figs/huddle_test_time_domain.png]] ** PSD of Measurement Noise #+begin_src matlab Ts = t(end)/(length(t)-1); Fs = 1/Ts; win = hanning(ceil(1*Fs)); #+end_src #+begin_src matlab [pxx, f] = pwelch(y(1000:end), win, [], [], Fs); #+end_src #+begin_src matlab :exports none figure; plot(f, sqrt(pxx)); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]'); xlim([1, Fs/2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/huddle_test_pdf.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:huddle_test_pdf #+caption: Amplitude Spectral Density of the Displacement during Huddle Test #+RESULTS: [[file:figs/huddle_test_pdf.png]] * Transfer Function Estimation using the DAC as the driver :PROPERTIES: :header-args:matlab+: :tangle matlab/tf_estimation.m :header-args:matlab+: :comments org :mkdirp yes :END: ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Load Data :noexport: #+begin_src matlab ht = load('./mat/huddle_test.mat', 't', 'u', 'y'); load('./mat/apa95ml_5kg_10V.mat', 't', 'u', 'y'); #+end_src ** Time Domain Data #+begin_src matlab :exports none figure; subplot(1,2,1); plot(t, u) ylabel('Input Voltage [V]'); xlabel('Time [s]'); subplot(1,2,2); plot(t, y) ylabel('Output Displacement [m]'); xlabel('Time [s]'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_10V_time_domain.pdf', 'width', 'full', 'height', 'tall'); #+end_src #+name: fig:apa95ml_5kg_10V_time_domain #+caption: Time domain signals during the test #+RESULTS: [[file:figs/apa95ml_5kg_10V_time_domain.png]] ** Comparison of the PSD with Huddle Test #+begin_src matlab Ts = t(end)/(length(t)-1); Fs = 1/Ts; win = hanning(ceil(1*Fs)); #+end_src #+begin_src matlab [pxx, f] = pwelch(y, win, [], [], Fs); [pht, ~] = pwelch(ht.y, win, [], [], Fs); #+end_src #+begin_src matlab :exports none figure; hold on; plot(f, sqrt(pxx), 'DisplayName', '5kg'); plot(f, sqrt(pht), 'DisplayName', 'Huddle Test'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]'); legend('location', 'northeast'); xlim([1, Fs/2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_10V_pdf_comp_huddle.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:apa95ml_5kg_10V_pdf_comp_huddle #+caption: Comparison of the ASD for the identification test and the huddle test #+RESULTS: [[file:figs/apa95ml_5kg_10V_pdf_comp_huddle.png]] ** Compute TF estimate and Coherence #+begin_src matlab Ts = t(end)/(length(t)-1); Fs = 1/Ts; #+end_src #+begin_src matlab win = hann(ceil(1/Ts)); [tf_est, f] = tfestimate(u, -y, win, [], [], 1/Ts); [co_est, ~] = mscohere( u, -y, win, [], [], 1/Ts); #+end_src #+begin_src matlab :exports none figure; hold on; plot(f, co_est, 'k-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Coherence'); xlabel('Frequency [Hz]'); hold off; xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_10V_coh.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:apa95ml_5kg_10V_coh #+caption: Coherence #+RESULTS: [[file:figs/apa95ml_5kg_10V_coh.png]] #+begin_src matlab :exports none figure; ax1 = subplot(2, 1, 1); hold on; plot(f, abs(tf_est), 'k-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); hold off; ax2 = subplot(2, 1, 2); hold on; plot(f, 180/pi*angle(tf_est), 'k-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; linkaxes([ax1,ax2], 'x'); xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_10V_tf.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:apa95ml_5kg_10V_tf #+caption: Estimation of the transfer function from input voltage to displacement #+RESULTS: [[file:figs/apa95ml_5kg_10V_tf.png]] ** Comparison with the FEM model #+begin_src matlab load('mat/fem_model_5kg.mat', 'Ghm'); #+end_src #+begin_src matlab :exports none figure; ax1 = subplot(2, 1, 1); hold on; plot(f, abs(tf_est), 'DisplayName', 'Identification') plot(f, abs(squeeze(freqresp(Ghm, f, 'Hz'))), 'DisplayName', 'FEM') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); legend('location', 'northeast') hold off; ax2 = subplot(2, 1, 2); hold on; plot(f, 180/pi*angle(tf_est)) plot(f, 180/pi*angle(squeeze(freqresp(Ghm, f, 'Hz')))) set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; linkaxes([ax1,ax2], 'x'); xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_comp_fem.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:apa95ml_5kg_comp_fem #+caption: Comparison of the identified transfer function and the one estimated from the FE model #+RESULTS: [[file:figs/apa95ml_5kg_comp_fem.png]] ** Conclusion :ignore: #+begin_important The problem comes from the fact that the piezo is driven directly by the DAC that cannot deliver enought current. In the next section, a current amplifier is used. #+end_important * Transfer Function Estimation using the PI Amplifier ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Load Data :noexport: #+begin_src matlab ht = load('./mat/huddle_test.mat', 't', 'u', 'y'); load('./mat/apa95ml_5kg_Amp_E505.mat', 't', 'u', 'um', 'y'); #+end_src #+begin_src matlab u = u - mean(u); um = um - mean(um); y = y - mean(y); ht.u = ht.u - mean(ht.u); ht.y = ht.y - mean(ht.y); #+end_src ** Comparison of the PSD with Huddle Test #+begin_src matlab Ts = t(end)/(length(t)-1); Fs = 1/Ts; win = hanning(ceil(1*Fs)); #+end_src #+begin_src matlab [pxx, f] = pwelch(y, win, [], [], Fs); [pht, ~] = pwelch(ht.y, win, [], [], Fs); #+end_src #+begin_src matlab :exports none figure; hold on; plot(f, sqrt(pxx), 'DisplayName', '5kg'); plot(f, sqrt(pht), 'DisplayName', 'Huddle Test'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]'); legend('location', 'southwest'); xlim([1, Fs/2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_PI_pdf_comp_huddle.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:apa95ml_5kg_PI_pdf_comp_huddle #+caption: Comparison of the ASD for the identification test and the huddle test #+RESULTS: [[file:figs/apa95ml_5kg_PI_pdf_comp_huddle.png]] ** Compute TF estimate and Coherence #+begin_src matlab Ts = t(end)/(length(t)-1); Fs = 1/Ts; #+end_src #+begin_src matlab win = hann(ceil(1/Ts)); [tf_est, f] = tfestimate(u, -y, win, [], [], 1/Ts); [tf_um , ~] = tfestimate(um, -y, win, [], [], 1/Ts); [co_est, ~] = mscohere( um, -y, win, [], [], 1/Ts); #+end_src #+begin_src matlab :exports none figure; hold on; plot(f, co_est, 'k-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Coherence'); xlabel('Frequency [Hz]'); hold off; xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_PI_coh.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:apa95ml_5kg_PI_coh #+caption: Coherence #+RESULTS: [[file:figs/apa95ml_5kg_PI_coh.png]] #+begin_src matlab :exports none figure; ax1 = subplot(2, 1, 1); hold on; plot(f, abs(tf_est), 'DisplayName', 'Input Voltage') plot(f, abs(tf_um), 'DisplayName', 'Monitor Voltage') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); hold off; legend('location', 'southwest') ax2 = subplot(2, 1, 2); hold on; plot(f, 180/pi*unwrap(angle(tf_est))) plot(f, 180/pi*unwrap(angle(tf_um))) set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; ylim([-540, 0]); yticks(-540:90:0); linkaxes([ax1,ax2], 'x'); xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_PI_tf.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:apa95ml_5kg_PI_tf #+caption: Estimation of the transfer function from input voltage to displacement #+RESULTS: [[file:figs/apa95ml_5kg_PI_tf.png]] ** Comparison with the FEM model #+begin_src matlab load('mat/fem_model_5kg.mat', 'Ghm'); #+end_src #+begin_src matlab :exports none freqs = logspace(0, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(f, 1/10*170/1400*abs(tf_um), 'DisplayName', 'Identification') plot(freqs, abs(squeeze(freqresp(Ghm, freqs, 'Hz'))), 'DisplayName', 'FEM') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); legend('location', 'northeast') hold off; ax2 = subplot(2, 1, 2); hold on; plot(f, 180/pi*unwrap(angle(tf_um))) plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Ghm, freqs, 'Hz'))))) set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; ylim([-540, 0]); yticks(-540:90:0); linkaxes([ax1,ax2], 'x'); xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_pi_comp_fem.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:apa95ml_5kg_pi_comp_fem #+caption: Comparison of the identified transfer function and the one estimated from the FE model #+RESULTS: [[file:figs/apa95ml_5kg_pi_comp_fem.png]] * Transfer function of the PI Amplifier ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Load Data :noexport: #+begin_src matlab load('./mat/apa95ml_5kg_Amp_E505.mat', 't', 'u', 'um'); #+end_src ** Compute TF estimate and Coherence #+begin_src matlab Ts = t(end)/(length(t)-1); Fs = 1/Ts; #+end_src The coherence and the transfer function are estimate from the voltage input of the PI amplifier to its voltage inputs. The coherence is very good as expected (Figure [[fig:PI_E505_coh]]). The transfer function show a low pass filter behavior with a lot of phase drop (Figure [[fig:PI_E505_tf]]). #+begin_src matlab win = hann(ceil(10/Ts)); [tf_est, f] = tfestimate(u, um, win, [], [], 1/Ts); [co_est, ~] = mscohere( u, um, win, [], [], 1/Ts); #+end_src #+begin_src matlab :exports none figure; hold on; plot(f, co_est, 'k-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Coherence'); xlabel('Frequency [Hz]'); hold off; xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/PI_E505_coh.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:PI_E505_coh #+caption: Coherence #+RESULTS: [[file:figs/PI_E505_coh.png]] #+begin_src matlab :exports none figure; ax1 = subplot(2, 1, 1); hold on; plot(f, abs(tf_est), 'k-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); hold off; ax2 = subplot(2, 1, 2); hold on; plot(f, 180/pi*angle(tf_est), 'k-') set(gca, 'Xscale', 'lin'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; ylim([-180, 180]); yticks(-180:90:180); linkaxes([ax1,ax2], 'x'); xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/PI_E505_tf.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:PI_E505_tf #+caption: Estimation of the transfer function from input voltage to displacement #+RESULTS: [[file:figs/PI_E505_tf.png]] The delay can be estimated as follow (in ms): #+begin_src matlab :results replace value finddelay(u, um)*(1000*Ts) #+end_src #+RESULTS: : 0.4 This most probably corresponds to a FIR filter.