#+TITLE: Test Bench APA95ML :DRAWER: #+STARTUP: overview #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ../index.html #+HTML_LINK_UP: ../index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_MATHJAX: align: center tagside: right font: TeX #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :tangle no #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:shell :eval no-export #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results raw replace :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports both #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs :END: * Introduction :ignore: #+name: fig:setup_picture #+caption: Picture of the Setup [[file:figs/setup_picture.png]] #+name: fig:setup_zoom #+caption: Zoom on the APA [[file:figs/setup_zoom.png]] * Setup :PROPERTIES: :header-args:matlab+: :tangle matlab/setup_experiment.m :header-args:matlab+: :comments org :mkdirp yes :END: ** Parameters #+begin_src matlab Ts = 1e-4; #+end_src ** Filter White Noise #+begin_src matlab Glpf = 1/(1 + s/2/pi/500); Gz = c2d(Glpf, Ts, 'tustin'); #+end_src * Run Experiment and Save Data :PROPERTIES: :header-args:matlab+: :tangle matlab/run_experiment.m :header-args:matlab+: :comments org :mkdirp yes :END: ** Load Data #+begin_src matlab data = SimulinkRealTime.utils.getFileScopeData('data/apa95ml.dat').data; #+end_src ** Save Data #+begin_src matlab u = data(:, 1); % Input Voltage [V] y = data(:, 2); % Output Displacement [m] t = data(:, 3); % Time [s] #+end_src #+begin_src matlab save('./mat/huddle_test.mat', 't', 'u', 'y', 'Glpf'); #+end_src * Huddle Test :PROPERTIES: :header-args:matlab+: :tangle matlab/huddle_test.m :header-args:matlab+: :comments org :mkdirp yes :END: ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Load Data :noexport: #+begin_src matlab load('./mat/huddle_test.mat', 't', 'y'); #+end_src #+begin_src matlab y = y - mean(y(1000:end)); #+end_src ** Time Domain Data #+begin_src matlab :exports none figure; plot(t(1000:end), y(1000:end)) ylabel('Output Displacement [m]'); xlabel('Time [s]'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/huddle_test_time_domain.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:huddle_test_time_domain #+caption: Measurement of the Mass displacement during Huddle Test #+RESULTS: [[file:figs/huddle_test_time_domain.png]] ** PSD of Measurement Noise #+begin_src matlab Ts = t(end)/(length(t)-1); Fs = 1/Ts; win = hanning(ceil(1*Fs)); #+end_src #+begin_src matlab [pxx, f] = pwelch(y(1000:end), win, [], [], Fs); #+end_src #+begin_src matlab :exports none figure; plot(f, sqrt(pxx)); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]'); xlim([1, Fs/2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/huddle_test_pdf.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:huddle_test_pdf #+caption: Amplitude Spectral Density of the Displacement during Huddle Test #+RESULTS: [[file:figs/huddle_test_pdf.png]] * Transfer Function Estimation using the DAC as the driver :PROPERTIES: :header-args:matlab+: :tangle matlab/tf_estimation.m :header-args:matlab+: :comments org :mkdirp yes :END: ** Introduction :ignore: #+begin_important Results presented in this sections are wrong as the ADC cannot deliver enought current to the piezoelectric actuator. #+end_important ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Load Data :noexport: #+begin_src matlab ht = load('./mat/huddle_test.mat', 't', 'u', 'y'); load('./mat/apa95ml_5kg_10V.mat', 't', 'u', 'y'); #+end_src ** Time Domain Data #+begin_src matlab :exports none figure; subplot(1,2,1); plot(t, u) ylabel('Input Voltage [V]'); xlabel('Time [s]'); subplot(1,2,2); plot(t, y) ylabel('Output Displacement [m]'); xlabel('Time [s]'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_10V_time_domain.pdf', 'width', 'full', 'height', 'tall'); #+end_src #+name: fig:apa95ml_5kg_10V_time_domain #+caption: Time domain signals during the test #+RESULTS: [[file:figs/apa95ml_5kg_10V_time_domain.png]] ** Comparison of the PSD with Huddle Test #+begin_src matlab Ts = t(end)/(length(t)-1); Fs = 1/Ts; win = hanning(ceil(1*Fs)); #+end_src #+begin_src matlab [pxx, f] = pwelch(y, win, [], [], Fs); [pht, ~] = pwelch(ht.y, win, [], [], Fs); #+end_src #+begin_src matlab :exports none figure; hold on; plot(f, sqrt(pxx), 'DisplayName', '5kg'); plot(f, sqrt(pht), 'DisplayName', 'Huddle Test'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]'); legend('location', 'northeast'); xlim([1, Fs/2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_10V_pdf_comp_huddle.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:apa95ml_5kg_10V_pdf_comp_huddle #+caption: Comparison of the ASD for the identification test and the huddle test #+RESULTS: [[file:figs/apa95ml_5kg_10V_pdf_comp_huddle.png]] ** Compute TF estimate and Coherence #+begin_src matlab Ts = t(end)/(length(t)-1); Fs = 1/Ts; #+end_src #+begin_src matlab win = hann(ceil(1/Ts)); [tf_est, f] = tfestimate(u, -y, win, [], [], 1/Ts); [co_est, ~] = mscohere( u, -y, win, [], [], 1/Ts); #+end_src #+begin_src matlab :exports none figure; hold on; plot(f, co_est, 'k-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Coherence'); xlabel('Frequency [Hz]'); hold off; xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_10V_coh.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:apa95ml_5kg_10V_coh #+caption: Coherence #+RESULTS: [[file:figs/apa95ml_5kg_10V_coh.png]] #+begin_src matlab :exports none figure; ax1 = subplot(2, 1, 1); hold on; plot(f, abs(tf_est), 'k-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); hold off; ax2 = subplot(2, 1, 2); hold on; plot(f, 180/pi*angle(tf_est), 'k-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; linkaxes([ax1,ax2], 'x'); xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_10V_tf.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:apa95ml_5kg_10V_tf #+caption: Estimation of the transfer function from input voltage to displacement #+RESULTS: [[file:figs/apa95ml_5kg_10V_tf.png]] ** Comparison with the FEM model #+begin_src matlab load('mat/fem_model_5kg.mat', 'Ghm'); #+end_src #+begin_src matlab :exports none figure; ax1 = subplot(2, 1, 1); hold on; plot(f, abs(tf_est), 'DisplayName', 'Identification') plot(f, abs(squeeze(freqresp(Ghm, f, 'Hz'))), 'DisplayName', 'FEM') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); legend('location', 'northeast') hold off; ax2 = subplot(2, 1, 2); hold on; plot(f, 180/pi*angle(tf_est)) plot(f, 180/pi*angle(squeeze(freqresp(Ghm, f, 'Hz')))) set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; linkaxes([ax1,ax2], 'x'); xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_comp_fem.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:apa95ml_5kg_comp_fem #+caption: Comparison of the identified transfer function and the one estimated from the FE model #+RESULTS: [[file:figs/apa95ml_5kg_comp_fem.png]] ** Conclusion :ignore: #+begin_important The problem comes from the fact that the piezo is driven directly by the DAC that cannot deliver enought current. In the next section, a current amplifier is used. #+end_important * Transfer Function Estimation using the PI Amplifier ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Load Data #+begin_src matlab ht = load('./mat/huddle_test.mat', 't', 'u', 'y'); load('./mat/apa95ml_5kg_Amp_E505.mat', 't', 'u', 'um', 'y'); #+end_src #+begin_src matlab u = 10*(u - mean(u)); % Input Voltage of Piezo [V] um = 10*(um - mean(um)); % Monitor [V] y = y - mean(y); % Mass displacement [m] ht.u = 10*(ht.u - mean(ht.u)); ht.y = ht.y - mean(ht.y); #+end_src ** Comparison of the PSD with Huddle Test #+begin_src matlab Ts = t(end)/(length(t)-1); Fs = 1/Ts; win = hanning(ceil(1*Fs)); #+end_src #+begin_src matlab [pxx, f] = pwelch(y, win, [], [], Fs); [pht, ~] = pwelch(ht.y, win, [], [], Fs); #+end_src #+begin_src matlab :exports none figure; hold on; plot(f, sqrt(pxx), 'DisplayName', '5kg'); plot(f, sqrt(pht), 'DisplayName', 'Huddle Test'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]'); legend('location', 'southwest'); xlim([1, Fs/2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_PI_pdf_comp_huddle.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:apa95ml_5kg_PI_pdf_comp_huddle #+caption: Comparison of the ASD for the identification test and the huddle test #+RESULTS: [[file:figs/apa95ml_5kg_PI_pdf_comp_huddle.png]] ** Compute TF estimate and Coherence #+begin_src matlab Ts = t(end)/(length(t)-1); Fs = 1/Ts; #+end_src #+begin_src matlab win = hann(ceil(1/Ts)); [tf_est, f] = tfestimate(u, -y, win, [], [], 1/Ts); [tf_um , ~] = tfestimate(um, -y, win, [], [], 1/Ts); [co_est, ~] = mscohere( um, -y, win, [], [], 1/Ts); #+end_src #+begin_src matlab :exports none figure; hold on; plot(f, co_est, 'k-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Coherence'); xlabel('Frequency [Hz]'); hold off; xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_PI_coh.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:apa95ml_5kg_PI_coh #+caption: Coherence #+RESULTS: [[file:figs/apa95ml_5kg_PI_coh.png]] #+begin_src matlab :exports none figure; ax1 = subplot(2, 1, 1); hold on; plot(f, abs(tf_est), 'DisplayName', 'Input Voltage') plot(f, abs(tf_um), 'DisplayName', 'Monitor Voltage') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude [m/V]'); xlabel('Frequency [Hz]'); hold off; legend('location', 'southwest') ax2 = subplot(2, 1, 2); hold on; plot(f, 180/pi*unwrap(angle(tf_est))) plot(f, 180/pi*unwrap(angle(tf_um))) set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; ylim([-540, 0]); yticks(-540:90:0); linkaxes([ax1,ax2], 'x'); xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_PI_tf.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:apa95ml_5kg_PI_tf #+caption: Estimation of the transfer function from input voltage to displacement #+RESULTS: [[file:figs/apa95ml_5kg_PI_tf.png]] ** Comparison with the FEM model #+begin_src matlab load('mat/fem_model_5kg.mat', 'G'); #+end_src #+begin_src matlab :exports none freqs = logspace(0, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(f, abs(tf_um), 'DisplayName', 'Identification') plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))), 'DisplayName', 'FEM') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude [m/V]'); xlabel('Frequency [Hz]'); legend('location', 'northeast') hold off; ax2 = subplot(2, 1, 2); hold on; plot(f, 180/pi*unwrap(angle(tf_um))) plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G, freqs, 'Hz'))))) set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; ylim([-540, 0]); yticks(-540:90:0); linkaxes([ax1,ax2], 'x'); xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa95ml_5kg_pi_comp_fem.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:apa95ml_5kg_pi_comp_fem #+caption: Comparison of the identified transfer function and the one estimated from the FE model #+RESULTS: [[file:figs/apa95ml_5kg_pi_comp_fem.png]] * Transfer function from force actuator to force sensor ** Introduction :ignore: Two measurements are performed: - Speedgoat DAC => Voltage Amplifier (x20) => 1 Piezo Stack => ... => 2 Stacks as Force Sensor (parallel) => Speedgoat ADC - Speedgoat DAC => Voltage Amplifier (x20) => 2 Piezo Stacks (parallel) => ... => 1 Stack as Force Sensor => Speedgoat ADC The obtained dynamics from force actuator to force sensor are compare with the FEM model. ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** Load Data :ignore: The data are loaded: #+begin_src matlab a_ss = load('mat/apa95ml_5kg_1a_2s.mat', 't', 'u', 'y', 'v'); aa_s = load('mat/apa95ml_5kg_2a_1s.mat', 't', 'u', 'y', 'v'); load('mat/G_force_sensor_5kg.mat', 'G'); #+end_src ** Adjust gain :ignore: Let's use the amplifier gain to obtain the true voltage applied to the actuator stack(s) The parameters of the piezoelectric stacks are defined below: #+begin_src matlab d33 = 3e-10; % Strain constant [m/V] n = 80; % Number of layers per stack eT = 1.6e-8; % Permittivity under constant stress [F/m] sD = 2e-11; % Elastic compliance under constant electric displacement [m2/N] ka = 235e6; % Stack stiffness [N/m] #+end_src From the FEM, we construct the transfer function from DAC voltage to ADC voltage. #+begin_src matlab Gfem_aa_s = exp(-s/1e4)*20*(2*d33*n*ka)*(G(3,1)+G(3,2))*d33/(eT*sD*n); Gfem_a_ss = exp(-s/1e4)*20*( d33*n*ka)*(G(3,1)+G(2,1))*d33/(eT*sD*n); #+end_src ** Compute TF estimate and Coherence :ignore: The transfer function from input voltage to output voltage are computed and shown in Figure [[fig:bode_plot_force_sensor_voltage_comp_fem]]. #+begin_src matlab Ts = a_ss.t(end)/(length(a_ss.t)-1); Fs = 1/Ts; win = hann(ceil(10/Ts)); [tf_a_ss, f] = tfestimate(a_ss.u, a_ss.v, win, [], [], 1/Ts); [coh_a_ss, ~] = mscohere( a_ss.u, a_ss.v, win, [], [], 1/Ts); [tf_aa_s, f] = tfestimate(aa_s.u, aa_s.v, win, [], [], 1/Ts); [coh_aa_s, ~] = mscohere( aa_s.u, aa_s.v, win, [], [], 1/Ts); #+end_src #+begin_src matlab :exports none freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; set(gca,'ColorOrderIndex',1) plot(f, abs(tf_aa_s), '-') set(gca,'ColorOrderIndex',1) plot(freqs, abs(squeeze(freqresp(Gfem_aa_s, freqs, 'Hz'))), '--') set(gca,'ColorOrderIndex',2) plot(f, abs(tf_a_ss), '-') set(gca,'ColorOrderIndex',2) plot(freqs, abs(squeeze(freqresp(Gfem_a_ss, freqs, 'Hz'))), '--') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); hold off; ylim([1e-2, 1e2]); ax2 = subplot(2, 1, 2); hold on; set(gca,'ColorOrderIndex',1) plot(f, 180/pi*angle(tf_aa_s), '-', 'DisplayName', '2 Act - 1 Sen') set(gca,'ColorOrderIndex',1) plot(freqs, 180/pi*angle(squeeze(freqresp(Gfem_aa_s, freqs, 'Hz'))), '--', 'DisplayName', '2 Act - 1 Sen, - FEM') set(gca,'ColorOrderIndex',2) plot(f, 180/pi*angle(tf_a_ss), '-', 'DisplayName', '1 Act - 2 Sen') set(gca,'ColorOrderIndex',2) plot(freqs, 180/pi*angle(squeeze(freqresp(Gfem_a_ss, freqs, 'Hz'))), '--', 'DisplayName', '1 Act - 2 Sen, - FEM') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; ylim([-180, 180]); yticks(-180:90:180); legend('location', 'northeast') linkaxes([ax1,ax2], 'x'); xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/bode_plot_force_sensor_voltage_comp_fem.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:bode_plot_force_sensor_voltage_comp_fem #+caption: Comparison of the identified dynamics from voltage output to voltage input and the FEM #+RESULTS: [[file:figs/bode_plot_force_sensor_voltage_comp_fem.png]] ** System Identification #+begin_src matlab w_z = 2*pi*111; % Zeros frequency [rad/s] w_p = 2*pi*255; % Pole frequency [rad/s] xi_z = 0.05; xi_p = 0.015; G_inf = 2; Gi = G_inf*(s^2 - 2*xi_z*w_z*s + w_z^2)/(s^2 + 2*xi_p*w_p*s + w_p^2); #+end_src #+begin_src matlab :exports none freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(f, abs(tf_aa_s), '-') plot(freqs, abs(squeeze(freqresp(Gi, freqs, 'Hz'))), '--') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); hold off; ylim([1e-2, 1e2]); ax2 = subplot(2, 1, 2); hold on; plot(f, 180/pi*angle(tf_aa_s), '-', 'DisplayName', '2 Act - 1 Sen') plot(freqs, 180/pi*angle(squeeze(freqresp(Gi, freqs, 'Hz'))), '--', 'DisplayName', '2 Act - 1 Sen, - FEM') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; ylim([-180, 180]); yticks(-180:90:180); legend('location', 'northeast') linkaxes([ax1,ax2], 'x'); xlim([10, 5e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/iff_plant_identification_apa95ml.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:iff_plant_identification_apa95ml #+caption: Identification of the IFF plant #+RESULTS: [[file:figs/iff_plant_identification_apa95ml.png]] ** Integral Force Feedback #+begin_src matlab :exports none gains = logspace(0, 5, 1000); figure; hold on; plot(real(pole(Gi)), imag(pole(Gi)), 'kx'); plot(real(tzero(Gi)), imag(tzero(Gi)), 'ko'); for i = 1:length(gains) cl_poles = pole(feedback(Gi, (gains(i)/(s + 2*2*pi)*s/(s + 0.5*2*pi)))); plot(real(cl_poles), imag(cl_poles), 'k.'); end ylim([0, 1800]); xlim([-1600,200]); xlabel('Real Part') ylabel('Imaginary Part') axis square #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/root_locus_iff_apa95ml_identification.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:root_locus_iff_apa95ml_identification #+caption: Root Locus for IFF #+RESULTS: [[file:figs/root_locus_iff_apa95ml_identification.png]] * IFF Tests ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src ** First tests with few gains #+begin_src matlab iff_g10 = load('./mat/apa95ml_iff_g10_res.mat', 'u', 't', 'y', 'v'); iff_g100 = load('./mat/apa95ml_iff_g100_res.mat', 'u', 't', 'y', 'v'); iff_of = load('./mat/apa95ml_iff_off_res.mat', 'u', 't', 'y', 'v'); #+end_src #+begin_src matlab Ts = 1e-4; win = hann(ceil(10/Ts)); [tf_iff_g10, f] = tfestimate(iff_g10.u, iff_g10.y, win, [], [], 1/Ts); [co_iff_g10, ~] = mscohere(iff_g10.u, iff_g10.y, win, [], [], 1/Ts); [tf_iff_g100, f] = tfestimate(iff_g100.u, iff_g100.y, win, [], [], 1/Ts); [co_iff_g100, ~] = mscohere(iff_g100.u, iff_g100.y, win, [], [], 1/Ts); [tf_iff_of, ~] = tfestimate(iff_of.u, iff_of.y, win, [], [], 1/Ts); [co_iff_of, ~] = mscohere(iff_of.u, iff_of.y, win, [], [], 1/Ts); #+end_src #+begin_src matlab :exports none figure; hold on; plot(f, co_iff_of, '-', 'DisplayName', 'g=0') plot(f, co_iff_g10, '-', 'DisplayName', 'g=10') plot(f, co_iff_g100, '-', 'DisplayName', 'g=100') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Coherence'); xlabel('Frequency [Hz]'); hold off; legend(); xlim([60, 600]) #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/iff_first_test_coherence.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:iff_first_test_coherence #+caption: Coherence #+RESULTS: [[file:figs/iff_first_test_coherence.png]] #+begin_src matlab :exports none figure; ax1 = subplot(2, 1, 1); hold on; plot(f, abs(tf_iff_of), '-', 'DisplayName', 'g=0') plot(f, abs(tf_iff_g10), '-', 'DisplayName', 'g=10') plot(f, abs(tf_iff_g100), '-', 'DisplayName', 'g=100') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); hold off; legend(); ax2 = subplot(2, 1, 2); hold on; plot(f, 180/pi*angle(-tf_iff_of), '-') plot(f, 180/pi*angle(-tf_iff_g10), '-') plot(f, 180/pi*angle(-tf_iff_g100), '-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; linkaxes([ax1,ax2], 'x'); xlim([60, 600]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/iff_first_test_bode_plot.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:iff_first_test_bode_plot #+caption: Bode plot for different values of IFF gain #+RESULTS: [[file:figs/iff_first_test_bode_plot.png]] ** Second test with many Gains #+begin_src matlab load('./mat/apa95ml_iff_test.mat', 'results'); #+end_src #+begin_src matlab Ts = 1e-4; win = hann(ceil(10/Ts)); #+end_src #+begin_src matlab tf_iff = {zeros(1, length(results))}; co_iff = {zeros(1, length(results))}; g_iff = [0, 1, 5, 10, 50, 100]; for i=1:length(results) [tf_est, f] = tfestimate(results{i}.u, results{i}.y, win, [], [], 1/Ts); [co_est, ~] = mscohere(results{i}.u, results{i}.y, win, [], [], 1/Ts); tf_iff(i) = {tf_est}; co_iff(i) = {co_est}; end #+end_src #+begin_src matlab :exports none figure; hold on; for i = 1:length(results) plot(f, co_iff{i}, '-', 'DisplayName', sprintf('g = %0.f', g_iff(i))) end set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Coherence'); xlabel('Frequency [Hz]'); hold off; legend(); xlim([60, 600]) #+end_src #+begin_src matlab :exports none figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:length(results) plot(f, abs(tf_iff{i}), '-', 'DisplayName', sprintf('g = %0.f', g_iff(i))) end set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); hold off; legend(); ax2 = subplot(2, 1, 2); hold on; for i = 1:length(results) plot(f, 180/pi*angle(-tf_iff{i}), '-') end set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; linkaxes([ax1,ax2], 'x'); xlim([60, 600]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/iff_results_bode_plots.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:iff_results_bode_plots #+caption: #+RESULTS: [[file:figs/iff_results_bode_plots.png]] #+begin_src matlab G_id = {zeros(1,length(results))}; f_start = 70; % [Hz] f_end = 500; % [Hz] for i = 1:length(results) tf_id = tf_iff{i}(sum(ff_end)); f_id = f(sum(ff_end)); gfr = idfrd(tf_id, 2*pi*f_id, Ts); G_id(i) = {procest(gfr,'P2UDZ')}; end #+end_src #+begin_src matlab :exports none figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:length(results) set(gca,'ColorOrderIndex',i) plot(f, abs(tf_iff{i}), '-', 'DisplayName', sprintf('g = %0.f', g_iff(i))) set(gca,'ColorOrderIndex',i) plot(f, abs(squeeze(freqresp(G_id{i}, f, 'Hz'))), '--', 'HandleVisibility', 'off') end set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); hold off; legend(); ax2 = subplot(2, 1, 2); hold on; for i = 1:length(results) set(gca,'ColorOrderIndex',i) plot(f, 180/pi*angle(tf_iff{i}), '-') set(gca,'ColorOrderIndex',i) plot(f, 180/pi*angle(squeeze(freqresp(G_id{i}, f, 'Hz'))), '--') end set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; linkaxes([ax1,ax2], 'x'); xlim([60, 600]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/iff_results_bode_plots_identification.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:iff_results_bode_plots_identification #+caption: #+RESULTS: [[file:figs/iff_results_bode_plots_identification.png]] #+begin_src matlab :exports none w_z = 2*pi*111; % Zeros frequency [rad/s] w_p = 2*pi*255; % Pole frequency [rad/s] xi_z = 0.05; xi_p = 0.015; G_inf = 2; Gi = G_inf*(s^2 - 2*xi_z*w_z*s + w_z^2)/(s^2 + 2*xi_p*w_p*s + w_p^2); gains = logspace(0, 5, 1000); figure; hold on; plot(real(pole(Gi)), imag(pole(Gi)), 'kx', 'HandleVisibility', 'off'); plot(real(tzero(Gi)), imag(tzero(Gi)), 'ko', 'HandleVisibility', 'off'); for i = 1:length(results) set(gca,'ColorOrderIndex',i) plot(real(pole(G_id{i})), imag(pole(G_id{i})), 'o', 'DisplayName', sprintf('g = %0.f', g_iff(i))); end for i = 1:length(gains) cl_poles = pole(feedback(Gi, (gains(i)/(s + 2*pi*2)))); plot(real(cl_poles), imag(cl_poles), 'k.', 'HandleVisibility', 'off'); end ylim([0, 1800]); xlim([-1600,200]); xlabel('Real Part') ylabel('Imaginary Part') axis square legend('location', 'northwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/iff_results_root_locus.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:iff_results_root_locus #+caption: #+RESULTS: [[file:figs/iff_results_root_locus.png]]