diff --git a/figs/apa95ml_5kg_PI_coh.pdf b/figs/apa95ml_5kg_PI_coh.pdf index aa70e5b..53e8ff1 100644 Binary files a/figs/apa95ml_5kg_PI_coh.pdf and b/figs/apa95ml_5kg_PI_coh.pdf differ diff --git a/figs/apa95ml_5kg_PI_coh.png b/figs/apa95ml_5kg_PI_coh.png index 0f01857..49f0b05 100644 Binary files a/figs/apa95ml_5kg_PI_coh.png and b/figs/apa95ml_5kg_PI_coh.png differ diff --git a/figs/apa95ml_5kg_PI_tf.pdf b/figs/apa95ml_5kg_PI_tf.pdf index 94ddad9..9841f66 100644 Binary files a/figs/apa95ml_5kg_PI_tf.pdf and b/figs/apa95ml_5kg_PI_tf.pdf differ diff --git a/figs/apa95ml_5kg_PI_tf.png b/figs/apa95ml_5kg_PI_tf.png index 1476271..226ab54 100644 Binary files a/figs/apa95ml_5kg_PI_tf.png and b/figs/apa95ml_5kg_PI_tf.png differ diff --git a/figs/apa95ml_5kg_pi_comp_fem.pdf b/figs/apa95ml_5kg_pi_comp_fem.pdf index 73cfd12..a7aeefc 100644 Binary files a/figs/apa95ml_5kg_pi_comp_fem.pdf and b/figs/apa95ml_5kg_pi_comp_fem.pdf differ diff --git a/figs/apa95ml_5kg_pi_comp_fem.png b/figs/apa95ml_5kg_pi_comp_fem.png index ed17f6c..4e92574 100644 Binary files a/figs/apa95ml_5kg_pi_comp_fem.png and b/figs/apa95ml_5kg_pi_comp_fem.png differ diff --git a/index.html b/index.html index bde09d9..50e9865 100644 --- a/index.html +++ b/index.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +
Figure 1: Picture of the Setup
Figure 2: Zoom on the APA
Ts = 1e-4; @@ -106,8 +98,8 @@
Glpf = 1/(1 + s/2/pi/500); @@ -119,13 +111,13 @@ Gz = c2d(Glpf, Ts, 'tustin');
data = SimulinkRealTime.utils.getFileScopeData('data/apa95ml.dat').data; @@ -134,8 +126,8 @@ Gz = c2d(Glpf, Ts, 'tustin');
u = data(:, 1); % Input Voltage [V] @@ -152,16 +144,16 @@ t = data(:, 3); % Time [s]
Figure 3: Measurement of the Mass displacement during Huddle Test
@@ -169,8 +161,8 @@ t = data(:, 3); % Time [s]Ts = t(end)/(length(t)-1); @@ -186,7 +178,7 @@ win = hanning(ceil(1*Fs));
Figure 4: Amplitude Spectral Density of the Displacement during Huddle Test
@@ -195,16 +187,16 @@ win = hanning(ceil(1*Fs));
Figure 5: Time domain signals during the test
@@ -212,8 +204,8 @@ win = hanning(ceil(1*Fs));Ts = t(end)/(length(t)-1); @@ -230,7 +222,7 @@ win = hanning(ceil(1*Fs));
Figure 6: Comparison of the ASD for the identification test and the huddle test
@@ -238,8 +230,8 @@ win = hanning(ceil(1*Fs));Ts = t(end)/(length(t)-1); @@ -256,14 +248,14 @@ Fs = 1/Ts;
Figure 7: Coherence
Figure 8: Estimation of the transfer function from input voltage to displacement
@@ -271,8 +263,8 @@ Fs = 1/Ts;load('mat/fem_model_5kg.mat', 'Ghm'); @@ -280,7 +272,7 @@ Fs = 1/Ts;
Figure 9: Comparison of the identified transfer function and the one estimated from the FE model
@@ -299,16 +291,97 @@ In the next section, a current amplifier is used.Ts = t(end)/(length(t)-1); Fs = 1/Ts; + +win = hanning(ceil(1*Fs)); ++
[pxx, f] = pwelch(y, win, [], [], Fs); +[pht, ~] = pwelch(ht.y, win, [], [], Fs); ++
+
+Figure 10: Comparison of the ASD for the identification test and the huddle test
+Ts = t(end)/(length(t)-1); +Fs = 1/Ts; ++
win = hann(ceil(1/Ts)); + +[tf_est, f] = tfestimate(u, -y, win, [], [], 1/Ts); +[tf_um , ~] = tfestimate(um, -y, win, [], [], 1/Ts); +[co_est, ~] = mscohere( um, -y, win, [], [], 1/Ts); ++
+
+Figure 11: Coherence
++
+Figure 12: Estimation of the transfer function from input voltage to displacement
+load('mat/fem_model_5kg.mat', 'Ghm'); ++
+
+Figure 13: Comparison of the identified transfer function and the one estimated from the FE model
+Ts = t(end)/(length(t)-1); +Fs = 1/Ts;
-The coherence is very good as expected (Figure 10). +The coherence is very good as expected (Figure 14).
-The transfer function show a low pass filter behavior with a lot of phase drop (Figure 11). +The transfer function show a low pass filter behavior with a lot of phase drop (Figure 15).
-
Figure 10: Coherence
+Figure 14: Coherence
-
Figure 11: Estimation of the transfer function from input voltage to displacement
+Figure 15: Estimation of the transfer function from input voltage to displacement
@@ -360,91 +433,10 @@ The delay can be estimated as follow:
Ts = t(end)/(length(t)-1); -Fs = 1/Ts; - -win = hanning(ceil(1*Fs)); --
[pxx, f] = pwelch(y, win, [], [], Fs); -[pht, ~] = pwelch(ht.y, win, [], [], Fs); --
-
-Figure 12: Comparison of the ASD for the identification test and the huddle test
-Ts = t(end)/(length(t)-1); -Fs = 1/Ts; --
win = hann(ceil(10/Ts)); - -[tf_est, f] = tfestimate(u, -y, win, [], [], 1/Ts); -[co_est, ~] = mscohere( u, -y, win, [], [], 1/Ts); --
-
-Figure 13: Coherence
--
-Figure 14: Estimation of the transfer function from input voltage to displacement
-load('mat/fem_model_5kg.mat', 'Ghm'); --
-
-Figure 15: Comparison of the identified transfer function and the one estimated from the FE model
-Created: 2020-07-24 ven. 13:06
+Created: 2020-07-24 ven. 13:16