diff --git a/figs/IMG_20200716_174810.jpg b/figs/IMG_20200716_174810.jpg new file mode 100644 index 0000000..e672121 Binary files /dev/null and b/figs/IMG_20200716_174810.jpg differ diff --git a/figs/IMG_20200720_091821.jpg b/figs/IMG_20200720_091821.jpg new file mode 100644 index 0000000..27b19c8 Binary files /dev/null and b/figs/IMG_20200720_091821.jpg differ diff --git a/figs/apa95ml_5kg_PI_tf.pdf b/figs/apa95ml_5kg_PI_tf.pdf index 9841f66..d0334c6 100644 Binary files a/figs/apa95ml_5kg_PI_tf.pdf and b/figs/apa95ml_5kg_PI_tf.pdf differ diff --git a/figs/apa95ml_5kg_PI_tf.png b/figs/apa95ml_5kg_PI_tf.png index 226ab54..08550ec 100644 Binary files a/figs/apa95ml_5kg_PI_tf.png and b/figs/apa95ml_5kg_PI_tf.png differ diff --git a/figs/apa95ml_5kg_pi_comp_fem.pdf b/figs/apa95ml_5kg_pi_comp_fem.pdf index a7aeefc..8d5e752 100644 Binary files a/figs/apa95ml_5kg_pi_comp_fem.pdf and b/figs/apa95ml_5kg_pi_comp_fem.pdf differ diff --git a/figs/apa95ml_5kg_pi_comp_fem.png b/figs/apa95ml_5kg_pi_comp_fem.png index 4e92574..6d6ede1 100644 Binary files a/figs/apa95ml_5kg_pi_comp_fem.png and b/figs/apa95ml_5kg_pi_comp_fem.png differ diff --git a/figs/exp_frf_identified_tf.pdf b/figs/exp_frf_identified_tf.pdf new file mode 100644 index 0000000..0f748f2 Binary files /dev/null and b/figs/exp_frf_identified_tf.pdf differ diff --git a/figs/exp_frf_identified_tf.png b/figs/exp_frf_identified_tf.png new file mode 100644 index 0000000..91e4198 Binary files /dev/null and b/figs/exp_frf_identified_tf.png differ diff --git a/index.html b/index.html index 40e37ce..9b6af1f 100644 --- a/index.html +++ b/index.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +
Figure 1: Picture of the Setup
Figure 2: Zoom on the APA
Ts = 1e-4;
+Ts = 1e-4;
Glpf = 1/(1 + s/2/pi/500); +Glpf = 1/(1 + s/2/pi/500); -Gz = c2d(Glpf, Ts, 'tustin'); +Gz = c2d(Glpf, Ts, 'tustin');
data = SimulinkRealTime.utils.getFileScopeData('data/apa95ml.dat').data;
+data = SimulinkRealTime.utils.getFileScopeData('data/apa95ml.dat').data;
u = data(:, 1); % Input Voltage [V] -y = data(:, 2); % Output Displacement [m] -t = data(:, 3); % Time [s] +u = data(:, 1); % Input Voltage [V] +y = data(:, 2); % Output Displacement [m] +t = data(:, 3); % Time [s]
save('./mat/huddle_test.mat', 't', 'u', 'y', 'Glpf'); +save('./mat/huddle_test.mat', 't', 'u', 'y', 'Glpf');
Figure 3: Measurement of the Mass displacement during Huddle Test
@@ -169,24 +169,24 @@ t = data(:, 3); % Time [s]Ts = t(end)/(length(t)-1); -Fs = 1/Ts; +Ts = t(end)/(length(t)-1); +Fs = 1/Ts; -win = hanning(ceil(1*Fs)); +win = hanning(ceil(1*Fs));
[pxx, f] = pwelch(y(1000:end), win, [], [], Fs);
+[pxx, f] = pwelch(y(1000:end), win, [], [], Fs);
Figure 4: Amplitude Spectral Density of the Displacement during Huddle Test
@@ -195,10 +195,10 @@ win = hanning(ceil(1*Fs));Results presented in this sections are wrong as the ADC cannot deliver enought current to the piezoelectric actuator.
@@ -206,11 +206,11 @@ Results presented in this sections are wrong as the ADC cannot deliver enought c
Figure 5: Time domain signals during the test
@@ -218,25 +218,25 @@ Results presented in this sections are wrong as the ADC cannot deliver enought cTs = t(end)/(length(t)-1); -Fs = 1/Ts; +Ts = t(end)/(length(t)-1); +Fs = 1/Ts; -win = hanning(ceil(1*Fs)); +win = hanning(ceil(1*Fs));
[pxx, f] = pwelch(y, win, [], [], Fs);
-[pht, ~] = pwelch(ht.y, win, [], [], Fs);
+[pht, ~] = pwelch(ht.y, win, [], [], Fs);
Figure 6: Comparison of the ASD for the identification test and the huddle test
@@ -244,32 +244,32 @@ win = hanning(ceil(1*Fs));Ts = t(end)/(length(t)-1); -Fs = 1/Ts; +Ts = t(end)/(length(t)-1); +Fs = 1/Ts;
win = hann(ceil(1/Ts)); +win = hann(ceil(1/Ts)); -[tf_est, f] = tfestimate(u, -y, win, [], [], 1/Ts); -[co_est, ~] = mscohere( u, -y, win, [], [], 1/Ts); +[tf_est, f] = tfestimate(u, -y, win, [], [], 1/Ts); +[co_est, ~] = mscohere( u, -y, win, [], [], 1/Ts);
Figure 7: Coherence
Figure 8: Estimation of the transfer function from input voltage to displacement
@@ -277,16 +277,16 @@ Fs = 1/Ts;load('mat/fem_model_5kg.mat', 'Ghm'); +load('mat/fem_model_5kg.mat', 'Ghm');
Figure 9: Comparison of the identified transfer function and the one estimated from the FE model
@@ -295,7 +295,7 @@ Fs = 1/Ts;The problem comes from the fact that the piezo is driven directly by the DAC that cannot deliver enought current. In the next section, a current amplifier is used. @@ -305,50 +305,50 @@ In the next section, a current amplifier is used.
ht = load('./mat/huddle_test.mat', 't', 'u', 'y'); -load('./mat/apa95ml_5kg_Amp_E505.mat', 't', 'u', 'um', 'y'); +ht = load('./mat/huddle_test.mat', 't', 'u', 'y'); +load('./mat/apa95ml_5kg_Amp_E505.mat', 't', 'u', 'um', 'y');
u = 10*(u - mean(u)); % Input Voltage of Piezo [V] -um = 10*(um - mean(um)); % Monitor [V] -y = y - mean(y); % Mass displacement [m] +u = 10*(u - mean(u)); % Input Voltage of Piezo [V] +um = 10*(um - mean(um)); % Monitor [V] +y = y - mean(y); % Mass displacement [m] -ht.u = 10*(ht.u - mean(ht.u)); -ht.y = ht.y - mean(ht.y); +ht.u = 10*(ht.u - mean(ht.u)); +ht.y = ht.y - mean(ht.y);
Ts = t(end)/(length(t)-1); -Fs = 1/Ts; +Ts = t(end)/(length(t)-1); +Fs = 1/Ts; -win = hanning(ceil(1*Fs)); +win = hanning(ceil(1*Fs));
[pxx, f] = pwelch(y, win, [], [], Fs);
-[pht, ~] = pwelch(ht.y, win, [], [], Fs);
+[pht, ~] = pwelch(ht.y, win, [], [], Fs);
Figure 10: Comparison of the ASD for the identification test and the huddle test
@@ -356,33 +356,33 @@ win = hanning(ceil(1*Fs));Ts = t(end)/(length(t)-1); -Fs = 1/Ts; +Ts = t(end)/(length(t)-1); +Fs = 1/Ts;
win = hann(ceil(1/Ts)); +win = hann(ceil(1/Ts)); -[tf_est, f] = tfestimate(u, -y, win, [], [], 1/Ts); -[tf_um , ~] = tfestimate(um, -y, win, [], [], 1/Ts); -[co_est, ~] = mscohere( um, -y, win, [], [], 1/Ts); +[tf_est, f] = tfestimate(u, -y, win, [], [], 1/Ts); +[tf_um , ~] = tfestimate(um, -y, win, [], [], 1/Ts); +[co_est, ~] = mscohere( um, -y, win, [], [], 1/Ts);
Figure 11: Coherence
Figure 12: Estimation of the transfer function from input voltage to displacement
@@ -390,16 +390,16 @@ Fs = 1/Ts;load('mat/fem_model_5kg.mat', 'G'); +load('mat/fem_model_5kg.mat', 'G');
Figure 13: Comparison of the identified transfer function and the one estimated from the FE model
@@ -408,8 +408,8 @@ Fs = 1/Ts;Two measurements are performed: @@ -426,9 +426,9 @@ The obtained dynamics from force actuator to force sensor are compare with the F The data are loaded:
a_ss = load('mat/apa95ml_5kg_1a_2s.mat', 't', 'u', 'y', 'v'); -aa_s = load('mat/apa95ml_5kg_2a_1s.mat', 't', 'u', 'y', 'v'); -load('mat/G_force_sensor_5kg.mat', 'G'); +a_ss = load('mat/apa95ml_5kg_1a_2s.mat', 't', 'u', 'y', 'v'); +aa_s = load('mat/apa95ml_5kg_2a_1s.mat', 't', 'u', 'y', 'v'); +load('mat/G_force_sensor_5kg.mat', 'G');
@@ -439,11 +439,11 @@ Let’s use the amplifier gain to obtain the true voltage applied to the act The parameters of the piezoelectric stacks are defined below:
d33 = 3e-10; % Strain constant [m/V] -n = 80; % Number of layers per stack -eT = 1.6e-8; % Permittivity under constant stress [F/m] -sD = 2e-11; % Elastic compliance under constant electric displacement [m2/N] -ka = 235e6; % Stack stiffness [N/m] +d33 = 3e-10; % Strain constant [m/V] +n = 80; % Number of layers per stack +eT = 1.6e-8; % Permittivity under constant stress [F/m] +sD = 2e-11; % Elastic compliance under constant electric displacement [m2/N] +ka = 235e6; % Stack stiffness [N/m]
Gfem_aa_s = exp(-s/1e4)*20*(2*d33*n*ka)*(G(3,1)+G(3,2))*d33/(eT*sD*n); -Gfem_a_ss = exp(-s/1e4)*20*( d33*n*ka)*(G(3,1)+G(2,1))*d33/(eT*sD*n); +Gfem_aa_s = exp(-s/1e4)*20*(2*d33*n*ka)*(G(3,1)+G(3,2))*d33/(eT*sD*n); +Gfem_a_ss = exp(-s/1e4)*20*( d33*n*ka)*(G(3,1)+G(2,1))*d33/(eT*sD*n);
-The transfer function from input voltage to output voltage are computed and shown in Figure 14. +The transfer function from input voltage to output voltage are computed and shown in Figure 14.
Ts = a_ss.t(end)/(length(a_ss.t)-1); -Fs = 1/Ts; +Ts = a_ss.t(end)/(length(a_ss.t)-1); +Fs = 1/Ts; -win = hann(ceil(10/Ts)); +win = hann(ceil(10/Ts)); -[tf_a_ss, f] = tfestimate(a_ss.u, a_ss.v, win, [], [], 1/Ts); -[coh_a_ss, ~] = mscohere( a_ss.u, a_ss.v, win, [], [], 1/Ts); +[tf_a_ss, f] = tfestimate(a_ss.u, a_ss.v, win, [], [], 1/Ts); +[coh_a_ss, ~] = mscohere( a_ss.u, a_ss.v, win, [], [], 1/Ts); -[tf_aa_s, f] = tfestimate(aa_s.u, aa_s.v, win, [], [], 1/Ts); -[coh_aa_s, ~] = mscohere( aa_s.u, aa_s.v, win, [], [], 1/Ts); +[tf_aa_s, f] = tfestimate(aa_s.u, aa_s.v, win, [], [], 1/Ts); +[coh_aa_s, ~] = mscohere( aa_s.u, aa_s.v, win, [], [], 1/Ts);
Figure 14: Comparison of the identified dynamics from voltage output to voltage input and the FEM
w_z = 2*pi*111; % Zeros frequency [rad/s] -w_p = 2*pi*255; % Pole frequency [rad/s] +w_z = 2*pi*111; % Zeros frequency [rad/s] +w_p = 2*pi*255; % Pole frequency [rad/s] xi_z = 0.05; xi_p = 0.015; G_inf = 2; -Gi = G_inf*(s^2 - 2*xi_z*w_z*s + w_z^2)/(s^2 + 2*xi_p*w_p*s + w_p^2); +Gi = G_inf*(s^2 - 2*xi_z*w_z*s + w_z^2)/(s^2 + 2*xi_p*w_p*s + w_p^2);
Figure 15: Identification of the IFF plant
@@ -504,11 +504,11 @@ Gi = G_inf*(s^2 - 2*xi_z*w_z*s + w_z^2)/(s^2 + 2*xi_p*w_p*s + w_p^2);
Figure 16: Root Locus for IFF
@@ -517,37 +517,37 @@ Gi = G_inf*(s^2 - 2*xi_z*w_z*s + w_z^2)/(s^2 + 2*xi_p*w_p*s + w_p^2);iff_g10 = load('./mat/apa95ml_iff_g10_res.mat', 'u', 't', 'y', 'v'); -iff_g100 = load('./mat/apa95ml_iff_g100_res.mat', 'u', 't', 'y', 'v'); -iff_of = load('./mat/apa95ml_iff_off_res.mat', 'u', 't', 'y', 'v'); +iff_g10 = load('./mat/apa95ml_iff_g10_res.mat', 'u', 't', 'y', 'v'); +iff_g100 = load('./mat/apa95ml_iff_g100_res.mat', 'u', 't', 'y', 'v'); +iff_of = load('./mat/apa95ml_iff_off_res.mat', 'u', 't', 'y', 'v');
Ts = 1e-4; -win = hann(ceil(10/Ts)); +Ts = 1e-4; +win = hann(ceil(10/Ts)); -[tf_iff_g10, f] = tfestimate(iff_g10.u, iff_g10.y, win, [], [], 1/Ts); -[co_iff_g10, ~] = mscohere(iff_g10.u, iff_g10.y, win, [], [], 1/Ts); +[tf_iff_g10, f] = tfestimate(iff_g10.u, iff_g10.y, win, [], [], 1/Ts); +[co_iff_g10, ~] = mscohere(iff_g10.u, iff_g10.y, win, [], [], 1/Ts); -[tf_iff_g100, f] = tfestimate(iff_g100.u, iff_g100.y, win, [], [], 1/Ts); -[co_iff_g100, ~] = mscohere(iff_g100.u, iff_g100.y, win, [], [], 1/Ts); +[tf_iff_g100, f] = tfestimate(iff_g100.u, iff_g100.y, win, [], [], 1/Ts); +[co_iff_g100, ~] = mscohere(iff_g100.u, iff_g100.y, win, [], [], 1/Ts); -[tf_iff_of, ~] = tfestimate(iff_of.u, iff_of.y, win, [], [], 1/Ts); -[co_iff_of, ~] = mscohere(iff_of.u, iff_of.y, win, [], [], 1/Ts); +[tf_iff_of, ~] = tfestimate(iff_of.u, iff_of.y, win, [], [], 1/Ts); +[co_iff_of, ~] = mscohere(iff_of.u, iff_of.y, win, [], [], 1/Ts);
Figure 17: Coherence
@@ -555,7 +555,7 @@ win = hann(ceil(10/Ts)); -
Figure 18: Bode plot for different values of IFF gain
@@ -563,17 +563,17 @@ win = hann(ceil(10/Ts));load('./mat/apa95ml_iff_test.mat', 'results'); +load('./mat/apa95ml_iff_test.mat', 'results');
Ts = 1e-4; -win = hann(ceil(10/Ts)); +Ts = 1e-4; +win = hann(ceil(10/Ts));
G_id = {zeros(1,length(results))}; -f_start = 70; % [Hz] -f_end = 500; % [Hz] +f_start = 70; % [Hz] +f_end = 500; % [Hz] -for i = 1:length(results) - tf_id = tf_iff{i}(sum(f<f_start):length(f)-sum(f>f_end)); - f_id = f(sum(f<f_start):length(f)-sum(f>f_end)); +for i = 1:length(results) + tf_id = tf_iff{i}(sum(f<f_start):length(f)-sum(f>f_end)); + f_id = f(sum(f<f_start):length(f)-sum(f>f_end)); - gfr = idfrd(tf_id, 2*pi*f_id, Ts); - G_id(i) = {procest(gfr,'P2UDZ')}; -end + gfr = idfrd(tf_id, 2*pi*f_id, Ts); + G_id(i) = {procest(gfr,'P2UDZ')}; +end
Created: 2020-08-21 ven. 15:26
+Created: 2020-11-03 mar. 10:11