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In this document, the use of the Jacobian matrix and the Singular Value Decomposition to render a

physical plant diagonal dominant is studied. Then, a diagonal controller is used.
These two methods are tested on two plants:
e In Section 1 on a 3-DoF gravimeter

e In Section 6 on a 6-DoF Stewart platform



1 Gravimeter - Simscape Model

1.1 Introduction

In this part, diagonal control using both the SVD and the Jacobian matrices are applied on a gravimeter
model:

e Section 1.2: the model is described and its parameters are defined.

e Section 1.3: the plant dynamics from the actuators to the sensors is computed from a Simscape
model.

e Section 1.4: the plant is decoupled using the Jacobian matrices.

e Section 1.5: the Singular Value Decomposition is performed on a real approximation of the plant
transfer matrix and further use to decouple the system.

e Section 1.6: the effectiveness of the decoupling is computed using the Gershorin radii

e Section 1.7: the effectiveness of the decoupling is computed using the Relative Gain Array
e Section 1.8: the obtained decoupled plants are compared

e Section 1.9: the diagonal controller is developed

e Section 1.10: the obtained closed-loop performances for the two methods are compared

e Section 1.11: the robustness to a change of actuator position is evaluated

e Section 1.12: the choice of the reference frame for the evaluation of the Jacobian is discussed

e Section 1.13: the decoupling performances of SVD is evaluated for a low damped and an highly
damped system

1.2 Gravimeter Model - Parameters

The model of the gravimeter is schematically shown in Figure 1.1.

The parameters used for the simulation are the following:
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Figure 1.1: Model of the gravimeter

Figure 1.2: Model of the struts

Matlab
1 =1.0;
h =1.7;
la = 1/2;
ha = h/2;
m = 400;
I=115;
k = 15e3;
c = 2el;
deq = 0.2;
g =0;
1.3 System Identification

Matlab
mdl = 'gravimeter';
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); do_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); ido_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); do_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'l], 1, 'openoutput'); io_i = io_i + 1;



io(io_i) = linio([mdl, '/Acc_top'l], 2, 'openoutput'); io_i = io_i + 1;

G = linearize(mdl, io);
G.InputName = {'F1', 'F2', 'F3'};
G.OutputName = {'Ax1"', 'Ayl', 'Ax2', 'Ay2'};

The inputs and outputs of the plant are shown in Figure 1.3.

More precisely there are three inputs (the three actuator forces):

1
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And 4 outputs (the two 2-DoF accelerometers):
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Figure 1.3: Schematic of the gravimeter plant

We can check the poles of the plant:

-0.12243-+13.551i
-0.12243-13.551i
-0.05+8.66011
-0.05-8.66011
-0.0088785+-3.6493i
-0.0088785-3.64931

As expected, the plant as 6 states (2 translations + 1 rotation)

Matlab

size(G)

Results

State-space model with 4 outputs, 3 inputs, and 6 states.

The bode plot of all elements of the plant are shown in Figure 1.4.
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Figure 1.4: Open Loop Transfer Function from 3 Actuators to 4 Accelerometers
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1.4 Decoupling using the Jacobian

Consider the control architecture shown in Figure 1.5.

The Jacobian matrix J; is used to transform forces applied by the three actuators into forces/torques
applied on the gravimeter at its center of mass:

71 171
n|=J"|F, (1.3)
T3 j»{z

The Jacobian matrix J, is used to compute the vertical acceleration, horizontal acceleration and rota-
tional acceleration of the mass with respect to its center of mass:

a Gzl
X
_ Qqy1
ay | =J;1 Y (1.4)
Qg2
(l}gz
Ay2

We thus define a new plant as defined in Figure 1.5.

G.(s)=J'G(s)J T

G (s) correspond to the 3 x 3 transfer function matrix from forces and torques applied to the gravimeter
at its center of mass to the absolute acceleration of the gravimeter’s center of mass (Figure 1.5).
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Figure 1.5: Decoupled plant G, using the Jacobian matrix J

The Jacobian corresponding to the sensors and actuators are defined below:

Matlab

10 -h/2
01 1/2
10 h/2
01 0l;

Ja=1[

Jt = [1 0 -ha
01 la
0 1 -lal;

And the plant G, is computed:

Matlab

Gx = pinv(Ja)*Gxpinv(Jt');
Gx.InputName = {'Fx', 'Fy', 'Mz'};
Gx.OutputName = {'Dx', 'Dy', 'Rz'};




Results

size(Gx)
State-space model with 3 outputs, 3 inputs, and 6 states.

The diagonal and off-diagonal elements of G, are shown in Figure 1.6.
It is shown at the system is:

e decoupled at high frequency thanks to a diagonal mass matrix (the Jacobian being evaluated at
the center of mass of the payload)

e coupled at low frequency due to the non-diagonal terms in the stiffness matrix, especially the term
corresponding to a coupling between a force in the x direction to a rotation around z (due to the

torque applied by the stiffness 1).

The choice of the frame in this the Jacobian is evaluated is discussed in Section 1.12.
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Figure 1.6: Diagonal and off-diagonal elements of G,

1.5 Decoupling using the SVD

In order to decouple the plant using the SVD, first a real approximation of the plant transfer function
matrix as the crossover frequency is required.

Let’s compute a real approximation of the complex matrix H; which corresponds to the the transfer
function G(jw.) from forces applied by the actuators to the measured acceleration of the top platform
evaluated at the frequency w.

Matlab

wc = 2*pix10;

H1 = evalfr(G, j*wc);




The real approximation is computed as follows:

Matlab

D = pinv(real(H1'xH1));

H1 = pinv(D*real (H1'*diag(exp(j*angle(diag(H1*DxH1.'))/2))));

Table 1.1: Real approximate of G at the decoupling frequency w,

0.0092 -0.0039  0.0039
-0.0039  0.0048 0.00028
-0.004  0.0038 -0.0038
8.4e-09  0.0025  0.0025

Now, the Singular Value Decomposition of H; is performed:

H, =UXVH

Matlab

[U,S,V] = svd(H1);

Table 1.2: U matrix

-0.78 0.26 -0.53 -0.2

0.4 061 -0.04 -0.68
048 -0.14 -0.85 0.2
0.03 0.73 0.06 0.68

Table 1.3: V matrix

-0.79 011  -0.6
0.51 0.67 -0.54
-0.35 0.73  0.59

The obtained matrices U and V are used to decouple the system as shown in Figure 1.7.

The decoupled plant is then:
Gsvp(s) = UﬁlG(S)ViH

Matlab

Gsvd = inv(U)*Gxinv(V');

Results

size(Gsvd)
State-space model with 4 outputs, 3 inputs, and 6 states.

The 4th output (corresponding to the null singular value) is discarded, and we only keep the 3 x 3 plant:

10



Figure 1.7: Decoupled plant Ggy p using the Singular Value Decomposition

Matlab

Gsvd = Gsvd(1:3, 1:3);

The diagonal and off-diagonal elements of the “SVD” plant are shown in Figure 1.8.
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Figure 1.8: Diagonal and off-diagonal elements of Gg,q

1.6 Verification of the decoupling using the “Gershgorin Radii”

The “Gershgorin Radii” is computed for the coupled plant G(s), for the “Jacobian plant” G, (s) and the
“SVD Decoupled Plant” Ggy p(s):

The “Gershgorin Radii” of a matrix S is defined by:

2 1564w

s _ JFi
W) = F 5G]

11
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Figure 1.9: Gershgorin Radii of the Coupled and Decoupled plants

1.7 Verification of the decoupling using the “Relative Gain
Array”

The relative gain array (RGA) is defined as:

T

A(G(s)) = Gs) x (G(5)7) (15)

where x denotes an element by element multiplication and G(s) is an n X n square transfer matrix.
The obtained RGA elements are shown in Figure 1.10.

The RGA-number is also a measure of diagonal dominance:

RGA-number = ||A(G) — I||sum (1.6)

1.8 Obtained Decoupled Plants

The bode plot of the diagonal and off-diagonal elements of Gy p are shown in Figure 1.12.

Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant
G(s) using the Jacobian are shown in Figure 1.13.

1.9 Diagonal Controller
The control diagram for the centralized control is shown in Figure 1.14.

The controller K. is “working” in an cartesian frame. The Jacobian is used to convert forces in the
cartesian frame to forces applied by the actuators.

12
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Figure 1.11: RGA-Number for the Gravimeter
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The SVD control architecture is shown in Figure 1.15. The matrices U and V are used to decoupled
the plant G.

T

S
Q
T
L\

Figure 1.15: Control Diagram for the SVD control

We choose the controller to be a low pass filter:

G is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is
equal to w,

Matlab
wc = 2*%pix10;
wo = 2*%pix0.1;
Matlab
K_cen = diag(1./diag(abs(evalfr(Gx, j*wc))))x(1/abs(evalfr(1/(1 + s/w@), j*wc)))/(1 + s/wo);
L_cen = K_cen*Gx;
Matlab
K_svd = diag(1./diag(abs(evalfr(Gsvd, jxwc))))*(1/abs(evalfr(1/(1 + s/w@), j*wc)))/(1 + s/w0);
L_svd = K_svd*Gsvd;
U_inv = inv(U);

The obtained diagonal elements of the loop gains are shown in Figure 1.16.

1.10 Closed-Loop system Performances

Now the system is identified again with additional inputs and outputs:
e z, y and R, ground motion

e z, y and R, acceleration of the payload.

Matlab
mdl = 'gravimeter'
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Dx'1], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Dy'], 1, 'openinput'); do_i = io_i + 1;
io(io_i) = linio([mdl, '/Rz'], 1, 'openinput'); io_i = io_i + 1;

16
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io(io_i) linio([mdl, '/F1'], 1, 'openinput'); io_i io_i + 1;

io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Abs_Motion'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Abs_Motion'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Abs_Motion'], 3, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'l, 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'l, 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'l, 2, 'openoutput'); io_i = io_i + 1;

G = linearize(mdl, io);

G.InputName = {'Dx', 'Dy', 'Rz', 'F1', 'F2', 'F3'};

G.OutputName = {'Ax', 'Ay', 'Arz', 'Ax1', 'Ayl', 'Ax2', 'Ay2'};

The loop is closed using the developed controllers.

Matlab

G_cen
G_svd

1ft(G, -pinv(Jt')*K_cen*pinv(Ja));
1ft(G, -inv(V')*K_svd*U_inv(1:3, :));

Let’s first verify the stability of the closed-loop systems:

Matlab
isstable(G_cen)
Results
ans =
logical
1
Matlab
isstable(G_svd)
Results
ans =
logical

1

The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control
are shown in Figure 1.17.

1.11 Robustness to a change of actuator position

Let say we change the position of the actuators:

Matlab

la = 1/2%0.7;

h/2%0.7;

18
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Matlab

mdl = 'gravimeter'

clear io; io_i = 1;

io(io_i) = linio([mdl, '/Dx'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) linio([mdl, '/Dy'1l, 1, 'openinput'); io_i = io_i + 1;
io(io_i) linio([mdl, '/Rz'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); do_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;

= io_i + 1;

io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i

io(io_i) linio([mdl, '/Abs_Motion'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Abs_Motion'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Abs_Motion'], 3, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) linio([mdl, '/Acc_side'l, 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'l, 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'l], 2, 'openoutput'); io_i = io_i + 1;

G = linearize(mdl, io);

G.InputName = {'Dx', 'Dy', 'Rz', 'F1', 'F2', 'F3'};

G.OutputName = {'Ax', 'Ay', 'Arz', 'Ax1', 'Ayl', 'Ax2', 'Ay2'};

The loop is closed using the developed controllers.

Matlab

1ft(G, -pinv(Jt')*K_cen*xpinv(Ja));
1ft(G, -inv(V')*K_svdxU_inv(1:3, :));

G_cen_b
G_svd_b

The new plant is computed, and the centralized and SVD control architectures are applied using the
previously computed Jacobian matrices and U and V' matrices.

The closed-loop system are still stable in both cases, and the obtained transmissibility are equivalent
as shown in Figure 1.19.
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Figure 1.19: Transmissibility for the initial CL system and when the position of actuators are changed
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1.12 Choice of the reference frame for Jacobian decoupling

If we want to decouple the system at low frequency (determined by the stiffness matrix), we have to
compute the Jacobian at a point where the stiffness matrix is diagonal. A displacement (resp. rotation)
of the mass at this particular point should induce a pure force (resp. torque) on the same point due
to stiffnesses in the system. This can be verified by geometrical computations.

If we want to decouple the system at high frequency (determined by the mass matrix), we have tot
compute the Jacobians at the Center of Mass of the suspended solid. Similarly to the stiffness analysis,
when considering only the inertia effects (neglecting the stiffnesses), a force (resp. torque) applied at
this point (the center of mass) should induce a pure acceleration (resp. angular acceleration).

Ideally, we would like to have a decoupled mass matrix and stiffness matrix at the same time. To do so,
the actuators (springs) should be positioned such that the stiffness matrix is diagonal when evaluated
at the CoM of the solid.

1.12.1 Decoupling of the mass matrix

=y
—

o

h
Y

He H

Figure 1.20: Choice of {O} such that the Mass Matrix is Diagonal

Matlab
la = 1/2;
ha = h/2;

Matlab
mdl = 'gravimeter'

clear io; io_i = 1;

io(io_i) = linio([mdl, '/F1'1, 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'1, 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); do_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;

G = linearize(mdl, io);
G.InputName = {'F1', 'F2', 'F3'};
G.OutputName = {'Ax1"', 'Ayl', 'Ax2"', 'Ay2'};

21



Decoupling at the CoM (Mass decoupled)

Matlab

10 -h/2
01 1/2
10 h/2
01 0l;

JMa = [

IMt = [1 @ -ha
1 1la
0 1 -lal;

S

Matlab

GM = pinv(JMa)*G*pinv(JMt');
GM.InputName = {'Fx', 'Fy', 'Mz'};
GM.OutputName = {'Dx', 'Dy', 'Rz'};

100 E T T
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Figure 1.21: Diagonal and off-diagonal elements of the decoupled plant

1.12.2 Decoupling of the stiffness matrix
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Figure 1.22: Choice of {O} such that the Stiffness Matrix is Diagonal

Decoupling at the point where K is diagonal (x = 0, y = -h/2 from the schematic {O} frame):
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Matlab

And the plant G, is computed:

Matlab

GK = pinv(JKa)*Gxpinv(JKt');
GK.InputName = {'Fx', 'Fy', 'Mz'};
GK.OutputName = {'Dx', 'Dy', 'Rz'};
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Figure 1.23: Diagonal and off-diagonal elements of the decoupled plant

1.12.3 Combined decoupling of the mass and stiffness matrices
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Figure 1.24: Ideal location of the actuators such that both the mass and stiffness matrices are diagonal

To do so, the actuator position should be modified
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Matlab

la = 1/2;
ha = 0;
Matlab
mdl = 'gravimeter'
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F1'1, 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); ido_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'l], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'l], 2, 'openoutput'); io_i = io_i + 1;
G = linearize(mdl, io);
G.InputName = {'F1', 'F2', 'F3'};
G.OutputName = {'Ax1", '"Ayl', 'Ax2', 'Ay2'};
Matlab
JMa = [1 @ -h/2
01 1/2
10 h/2
01 0l;
IMt = [1 @ -ha
01 la
0 1 -lal;
Matlab

GKM = pinv(JMa)*G*pinv(IMt');
GKM.InputName = {'Fx', 'Fy', 'Mz'};
GKM.OutputName = {'Dx', 'Dy', 'Rz'};
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Figure 1.25: Diagonal and off-diagonal elements of the decoupled plant
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1.12.4 Conclusion

Ideally, the mechanical system should be designed in order to have a decoupled stiffness matrix at the
CoM of the solid.

If not the case, the system can either be decoupled as low frequency if the Jacobian are evaluated at a

point where the stiffness matrix is decoupled. Or it can be decoupled at high frequency if the Jacobians
are evaluated at the CoM.

1.13 SVD decoupling performances

As the SVD is applied on a real approximation of the plant dynamics at a frequency wy, it is foreseen
that the effectiveness of the decoupling depends on the validity of the real approximation.

Let’s do the SVD decoupling on a plant that is mostly real (low damping) and one with a large imaginary
part (larger damping).

Start with small damping, the obtained diagonal and off-diagonal terms are shown in Figure 1.26.

Matlab

c = 2el;
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Figure 1.26: Diagonal and off-diagonal term when decoupling with SVD on the gravimeter with small
damping

¢

Now take a larger damping, the obtained diagonal and off-diagonal terms are shown in Figure 1.27.

Matlab

c = 5e2;
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Figure 1.27: Diagonal and off-diagonal term when decoupling with SVD on the gravimeter with high
damping
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2 Parallel Manipulator with Collocated
actuator/sensor pairs

In this section, we will see how the Jacobian matrix can be used to decouple a specific set of mechanical
systems (described in Section 2.1).

The basic decoupling architecture is shown in Figure 2.1 where the Jacobian matrix is used to both
compute the actuator forces from forces/torques that are to be applied in a specific defined frame, and

to compute the displacement /rotation of the same mass from several sensors.

This is rapidly explained in Section 2.2.

F iy

Depending on the chosen frame, the Stiffness matrix in that particular frame can be computed. This is
explained in Section 2.3.

Then three decoupling in three specific frames is studied:
e Section 2.4: control in the frame of the legs
e Section 2.5: control in a frame whose origin is at the center of mass of the payload
e Section 2.6: control in a frame whose origin is located at the “center of stiffness” of the system

Conclusions are drawn in Section 2.7.

2.1 Model

Let’s consider a parallel manipulator with several collocated actuator/sensors pairs.
System in Figure 2.1 will serve as an example.
We will note:

e b;: location of the joints on the top platform
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e 3;: unit vector corresponding to the struts direction

k;: stiffness of the struts

e 7;: actuator forces

Os: center of mass of the solid body

e L;: relative displacement of the struts

DI B ?-----?»
i h

Y :

{3}
Ly [Kp, =T ‘Onmz 1

: )
Y,51____. b

il’. |OK . :

1 So : S3.1

bZA a :la b3

il
fEol <

Figure 2.1: Model of the gravimeter

The parameters are defined as follows:

Matlab
1 =1.0;
h = 2x1.7;
la = 1/2;
ha = h/2;
m = 400;
I=115;
cl = 2el;
c2 = 2el;
c3 = 2el;
k1 = 15e3;
k2 = 15e3;
k3 = 15e3;

Let’s express Mb; and §;:
My, = [—1/2, —h]
Mb2 = [_lav _h/2]
MbS = [ZCL, _h/2]

w0 »
[\ —
I
=
=2

w

I
=
=
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Matlab

s1 = [1;0];
s2 = [0;1];
s3 = [0;1];

Mb1 = [-1/2;-hal;
Mb2 = [-la; -h/2];
Mb3 = [ la; -h/21;

Frame {K} is chosen such that the stiffness matrix is diagonal (explained in Section 3).

The positions Xb; are then:

Kby =[-1/2, 0] (2.7
Kby = [~la, —h/2 + hg]
Kby = [la, —h/2 + hq]
Matlab
Kbl = [-1/2; 0];
Kb2 = [-la; -h/2+ha];
Kb3 = [ la; -h/2+hal;
2.2 The Jacobian Matrix
Let’s note:
e L the vector of actuator displacement:
Ly
L=|L, (2.10)
L3
e 7 the vector of actuator forces:
1
T= |72 (2.11)
T3
e F (0} the vector of forces/torques applied on the payload on expressed in frame {O}:
F{o}e
Fioy = | Fory (2.12)
Mo} .-
e X0y the vector of displacement of the payload with respect to frame {O}:
X(0},2
X0y = | X0y (2.13)
X0}, R.
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The Jacobian matrix can be used to:
e Convert joints velocity L to payload velocity and angular velocity X [0}:

X0y = Jio) £

e Convert actuators forces T to forces/torque applied on the payload Foy:
F {0y = J{TO}T
with {O} any chosen frame.

If we consider small displacements, we have an approximate relation that links the displacements
(instead of velocities):

Xy = J{M}L', (2.14)

The Jacobian can be computed as follows:

O T O Oa O Oa
5 b1z 81y — “b1a7 81,y

O T O O O O
8 TbaaT 82y — TbasU S0y
J{O} = : : (2.15)
OT O Oa O Oa
Sn bnvm Snyy - bnvx Snyy

Let’s compute the Jacobian matrix in frame {M} and {K}:

Matlab

Jm = [s1', Mb1(1)*s1(2)-Mb1(2)*s1(1);
s2', Mb2(1)*s2(2)-Mb2(2)*s2(1);
s3', Mb3(1)*s3(2)-Mb3(2)*s3(1)1;

Table 2.1: Jacobian Matrix Jyy,

1 0 1.7

0 1 -05

0 1 05
Matlab

Jk = [s1", Kb1(1)*s1(2)-Kb1(2)*s1(1);
s2', Kb2(1)*s2(2)-Kb2(2)*s2(1);
s3', Kb3(1)*s3(2)-Kb3(2)*s3(1)1;

Table 2.2: Jacobian Matrix Jyg

1 0 0
0 1 -05
0 1 05
In the frame {M}, the Jacobian is:
1 0 he
Jon = [0 1 =, (2.16)
01 I
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And in frame {K}, the Jacobian is:

10
Jxr =10 1 —l, 2.17
(K}

0 1

2.3 The Stiffness Matrix

For a parallel manipulator, the stiffness matrix expressed in a frame {O} is:
Koy = J{TO}ICJ{O} (2.18)
where:

e Jioy is the Jacobian matrix expressed in frame {O}

e /C is a diagonal matrix with the strut stiffnesses on the diagonal

k1 0
)
K= ‘ (2.19)

We have the same thing for the damping matrix.

Matlab

Kr = diag([k1,k2,k31);
Cr = diag([c1,c2,c3]);

2.4 Equations of motion - Frame of the legs

Applying the second Newton’s law on the system in Figure 2.1 at its center of mass Oy;, we obtain:
(M{M}82+K{M}) X{M} :.'F{M} (2.20)

with:

e My is the mass matrix expressed in {M }:

My =

oo 3
~ o o

0
m
0

e Kypp is the stiffness matrix expressed in {M}:

Ky = T K

e Xy are displacements/rotations of the mass x, y, R. expressed in the frame {M}
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e F ) are forces/torques F, F,, M. applied at the origin of {M}
Let’s use the Jacobian matrix to compute the equations in terms of actuator forces 7 and strut dis-
placement L:
2 -1 T
(M{M}S —|—K{M}) J{M};CZJ{M}T (2.21)
And we obtain:

(b Moy TGl s + ) £ = 7 (2.22)

The transfer function G(s) from 7 to L is:

—1
G(s) = (JGh Mo Ty s + K) (2.23)

5 ¢ |5

Figure 2.2: Block diagram of the transfer function from 7 to £
Matlab

Mm = diag([m,m,I1);

Let’s note the mass matrix in the frame of the legs:
-7 —1
My = T Moy oy (2.24)

Matlab

Ml = inv(Im')*Mmxinv(Jm);

Table 2.3: M,
400 680  -680
680 1371 -1171
-680 -1171 1371

As we can see, the Stiffness matrix in the frame of the legs is diagonal. This means the plant dynamics
will be diagonal at low frequency.

Matlab

K1 = diag([k1, k2, k31);

Matlab

Cl = diag([c1, c2, c31);

The transfer function G(s) from 7 to £ is defined below and its magnitude is shown in Figure 2.3.
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Table 2.4: K1), =K

15000 0 0

0 15000 0

0 0 15000
Matlab

Gl = inv(Mlxs*2 + Clxs + K1);

We can indeed see that the system is well decoupled at low frequency.

1072 E T T

—_
2
i

Magnitude

1070 |

1078 L L L
1072 107! 10° 10* 102
Frequency [Hz]

Figure 2.3: Dynamics from 7 to £

2.5 Equations of motion - “Center of mass” {M}

The equations of motion expressed in frame {M} are:

(Manys® + Kuy) Xy = Fian (2.25)

And the plant from Fypry to Xy is:

1
Gixy = (Mpnys™ + Kqy) (2.26)

with:

e My is the mass matrix expressed in {M }:

My =

oo 3
o3 o
~ o o
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e Kynp is the stiffness matrix expressed in {M }:
Koy = T KTty

Fimy

Figure 2.4: Block diagram of the transfer function from F sy to Xy
Matlab

Mm = diag([m,m,I1);

Table 2.5: Mass matrix expressed in {M}: Myapy

400 0 0

0 400 0

0 0 115
Matlab

Km = Jm'*Kr*Jm;

Table 2.6: Stiffness matrix expressed in {M}: Kqypy

15000 0 25500

0 30000 0

25500 0 50850
Matlab

Cm = Jm'*Cr*Jm;

The plant from Fypry to Xy is defined below and its magnitude is shown in Figure 2.5.

Matlab

Gm = inv(Mmxs*2 + Cmxs + Km);

And the system is well decoupled at high frequency (above the suspension modes).

2.6 Equations of motion - “Center of stiffness” {K}

Let’s now express the transfer function from F gy to X xy. We start from:

2 -1 T
(Myarys® + Kqary) Jon L = JonT
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Figure 2.5: Dynamics from Fyy to Xy

And we make use of the Jacobian J{xy} to obtain:

(Manys® + Kany) Iy T X ey = Ty T i F ik (2.28)

And finally:
T =T —1 T
(‘]{K}J{M}M{M}J{M}J{K}52 + J{K}’CJ{K}) X(ky = Fiky (2.29)

The transfer function from F gy to X gy is then:

-1
Gy = (Tl Tim Mon Ty Ty s + T Ky ) (2.30)

The frame {K} has been chosen such that J{TK}ICJ{ K} is diagonal.

F ik}

Figure 2.6: Block diagram of the transfer function from F gy to X (k)

Matlab

Mk = Jk'xinv(JIm) '*Mm*xinv(Im)*Jk;

Table 2.7: Mass matrix expressed in {K}: My
400 0 -680
0 400 0
-680 0 1271
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Matlab

Kk = Jk'*Kr*Jk;

Table 2.8: Stiffness matrix expressed in {K}: Kk

15000 0 0
0 30000 0
0 0 7500

The plant from F(g, to X (g is defined below and its magnitude is shown in Figure 2.7.

Matlab

Gk = inv(Mkxs*2 + Ck*s + Kk);
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Figure 2.7: Dynamics from Fxy to X (g
2.7 Conclusion
Jacobian matrices can be used to decouple the presented system.

Depending on the chosen frame used for the estimation of the Jacobian, different plant dynamics is
obtained.
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3 Diagonal Stiffness Matrix for a planar
manipulator

3.1 Model and Assumptions

Consider a parallel manipulator with:
e b;: location of the joints on the top platform are called b;
e §;: unit vector corresponding to the struts
o k;: stiffness of the struts
e T7;: actuator forces
e Oj;: center of mass of the solid body
Consider two frames:
e {M} with origin Oy,
e {K} with origin Og

As an example, take the system shown in Figure 3.1.

Figure 3.1: Example of 3DoF parallel platform
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3.2 Objective

The objective is to find conditions for the existence of a frame {K} in which the Stiffness matrix of the
manipulator is diagonal. If the conditions are fulfilled, a second objective is to fine the location of the
frame {K} analytically.

3.3 Conditions for Diagonal Stiffness

The stiffness matrix in the frame {K} can be expressed as:
Kigy = J{K}KJ{K} (3.1)
where:

e Jiky is the Jacobian transformation from the struts to the frame {K}

e K is a diagonal matrix with the strut stiffnesses on the diagonal

k1 0
)

0 kn,

KT Kjp Ko Ky Kz
81 bra” 81y — Tbia" 81y
KT Kp Ka Ky Kz
85 ba,a™ 82y — oo S2y
Jiky=1| . . (3.3)
KT Ki Koz Kp Koz
Sn bmw Sn,y - bn T Sn,y

Let’s omit the mention of frame, it is assumed that vectors are expressed in frame {K}. It is specified
otherwise.

Injecting (3.3) into (3.1) yields:

ki8;87 | ki8i(biwSiy — biydic)
Ky = | Rsi ity — BigBin) | Filbiefig — bisie) (3.4)
In order to have a decoupled stiffness matrix, we have the following two conditions:
ki358T = diag. matrix (3.5)
ki8i(bia8iy — biySia) =0 (3.6)

Note that we don’t have any condition on the term k;(b; »8; , — bi,yéi,z)g as it is only a scalar.

Condition (3.5):
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e represents the coupling between translations and forces

e does only depends on the orientation of the struts and the stiffnesses and not on the choice of
frame

e it is therefore a intrinsic property of the chosen geometry

Condition (3.6):
e represents the coupling between forces/rotations and torques/translation
e it does depend on the positions of the joints b; in the frame {K'}

Let’s make a change of frame from the initial frame {M} to the frame {K}:

K My M
bi="b;— " Ok
Kg _ Mg

And the goal is to find O such that (3.6) is fulfilled:
ki(Mbiediy = Mbiyie — MOk 280y + MOk y3i2)3 = 0 (3.9)
ki(Mb; 2850 — Mb; y8i.2)80 = MOk wkii y5i — M Or ykidi 28 (3.10)
And we have two sets of linear equations of two unknowns.

This can be easily solved by writing the equations in a matrix form:

MO
ki(Mbi,zéi,y — Mbi,yéi,x)éi = |ki8iy8 —kiSia8; [MOE’Z] (3.11)
Y
2x1
2x1
2X2
And finally, if the matrix is invertible:
—1
MOk = [kiSiydi —kiSini|  ki(Mbiadiy — Mbiydia)di (3.12)

Note that a rotation of the frame {K} with respect to frame {M} would make not change on the
“diagonality” of K.

3.4 Example 1 - Planar manipulator with 3 actuators

Consider system of Figure 3.2.

M

The stiffnesses k;, the joint positions M b; and joint unit vectors M 3; are defined below:
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T1 :
kz% T2 ks% T3

Figure 3.2: Example of 3DoF parallel platform

Matlab
IIR=RR5RAI2Il;
si = [[1;0],00;11,[0;11]; si = si./vecnorm(si);
bi = [[-1;0.5],[-2;-1]1,[0;-11];
Let’s first verify that condition (3.5) is true:
5 0
0 2

Now, compute M Og:

Matlab
Ok = inv([sum(ki.*si(2,:).xsi, 2), -sum(ki.xsi(1,:).*si, 2)I)*xsum(ki.*(bi(1,:).*xsi(2,:) - bi(2,:).*si(1,:)).*si, 2);

-1
0.5

Let’s compute the new coordinates Xb; after the change of frame:

Matlab

Kbi = bi - Ok;

In order to verify that the new frame {K} indeed yields a diagonal stiffness matrix, we first compute
the Jacobian Jygy:

Matlab
Jk = [si', (Kbi(1,:).*si(2,:) - Kbi(2,:).*si(1,:))"'];
1 0 0
0o 1 -1
0 1 1
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And the stiffness matrix:

Matlab

K = Jk'xdiag(ki)xJk
5 0 0
0 2 0
0 0 2

3.5 Example 2 - Planar manipulator with 4 actuators
Now consider the planar manipulator of Figure 3.3.

Moving position of vertical
actuators

z l
U
x.\f
77 //./ NNNNNNN
i 7 y
s u
i/ 1
el A A
i: 3 >
A

Figure 3.3: Planar Manipulator

M

The stiffnesses k;, the joint positions b; and joint unit vectors M ; are defined below:

Matlab

ki =1[1,2,1,1];

si = [[1;01,00;11,[-1;0]1,[0;11];
si = si./vecnorm(si);

h =0.2;

41



L =2;
bi = [[-L/2;h]1,[-L/2;-h],[L/2;h],[L/2;h]];

Let’s first verify that condition (3.5) is true:

Matlab
ki.*sixsi'

2 0

0 3
Now, compute MO

Matlab

Ok = inv([sum(ki.*si(2,:).xsi, 2), -sum(ki.xsi(1,:).*si, 2)I)*xsum(ki.*(bi(1,:).xsi(2,:) - bi(2,:).*si(1,:)).*si, 2);

-0.33333
0.2

Let’s compute the new coordinates Xb; after the change of frame:

Matlab

Kbi = bi - Ok;

In order to verify that the new frame {K} indeed yields a diagonal stiffness matrix, we first compute
the Jacobian Jyg:

Matlab
Tk = [si', (Kbi(1,:).%si(2,:) - Kbi(2,:).%si(1,:))'];
1 0 0
0 1 -0.66667
-1 0 0
0 1 1.3333
And the stiffness matrix:
Matlab
K = Jk'*diag(ki)*Jk
2 0 0
0 3 -2.2204e-16
0 -2.2204e-16 2.6667
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4 Diagonal Stiffness Matrix for a general
parallel manipulator

4.1 Model and Assumptions

Let’s consider a 6dof parallel manipulator with:
e b;: location of the joints on the top platform are called b;
e §;: unit vector corresponding to the struts
o k;: stiffness of the struts
e T7;: actuator forces
e Oj;: center of mass of the solid body
Consider two frames:
e {M} with origin Oy,
e {K} with origin Og

An example is shown in Figure 4.1.

Figure 4.1: Parallel manipulator Example
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4.2 Objective

The objective is to find conditions for the existence of a frame {K} in which the Stiffness matrix of the
manipulator is diagonal. If the conditions are fulfilled, a second objective is to fine the location of the
frame {K} analytically.

4.3 Analytical formula of the stiffness matrix

For a fully parallel manipulator, the stiffness matrix K(g) expressed in a frame {K} is:
T
K{K} = J{K}’CJ{K} (4.1)
where:
e Jiky is the Jacobian transformation from the struts to the frame {K'}

e [ is a diagonal matrix with the strut stiffnesses on the diagonal:

k1 0
ko

The analytical expression of Jyxy is:

Kg{ (Kbl X Ksl)T
Kég (Kb2 X KSQ)T

Ty = : (4:3)
Kéz; (Kb X K‘§7L)T

To simplify, we ignore the superscript K and we assume that all vectors / positions are expressed in
this frame {K}. Otherwise, it is explicitly written.

Let’s now write the analytical expressing of the stiffness matrix Kxy:

by §§ (b1 x §1);
K _ §1 . ,§n . S5 (bQ X 82) (4 4)
{K} (b1 x81) ... (bnx8p) . .
kn §T (bn % §n)T
And we finally obtain:
kisist | kii(bi x 8)7
Kiky = [ ki(b; x 8;)8T | ki(bi x 8;)(b; x §;)T (4.5)
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We want the stiffness matrix to be diagonal, therefore, we have the following conditions:

~

k;5;5; = diag. matrix
Ei(b; x 5;)(b; x 8;)7 = diag. matrix
kidi(b; x )T =0

Note that:

e condition (4.6) corresponds to coupling between forces applied on O to translations of the pay-
load. It does not depend on the choice of {K}, it only depends on the orientation of the struts

and the stiffnesses. It is therefore an intrinsic property of the manipulator.

e condition (4.7) corresponds to the coupling between forces applied on Ok and rotation of the
payload. Similarly, it does also correspond to the coupling between torques applied on Ok to

translations of the payload.

e condition (4.8) corresponds to the coupling between torques applied on O to rotation of the

payload.

e conditions (4.7) and (4.8) do depend on the positions ¥b; and therefore depend on the choice of

(K}

Note that if we find a frame { K} in which the stiffness matrix K is diagonal, it will still be diagonal
for any rotation of the frame {K}. Therefore, we here suppose that the frame {K} is aligned with the

initial frame {M}.
Let’s make a change of frame from the initial frame {M} to the frame {K}:

Kbi:Mbi—]wOK

Ko =M,

The goal is to find ¥ Ok such that conditions (4.7) and (4.8) are fulfilled.

Let’s first solve equation (4.8) that corresponds to the coupling between forces and rotations:

kl§l((Mbl — MO[() X §1)T =0

Taking the transpose and re-arranging:

k‘,(JwbZ X §i)§T = k‘l(MOK X §Z)§1T

i

(4.9)
(4.10)

(4.11)

(4.12)

As the vector cross product also can be expressed as the product of a skew-symmetric matrix and a

vector, we obtain:

with:
0 - OK,Z OK,y
MOK = OK,Z 0 _MOK,;C
7MOK7y MOKI 0
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We suppose k;3;57 invertible as it is diagonal from (4.6).

And finally, we find:

MO = (ki(Mbi x 5)8T) - (kisisT) ™ (4.15)

If the obtained MOk is a skew-symmetric matrix, we can easily determine the corresponding vector
MO from (4.14).

In such case, condition (4.7) is fulfilled and there is no coupling between translations and rotations in
the frame {K}.

Then, we can only verify if condition (4.8) is verified or not.

If there is no frame {K} such that conditions (4.7) and (4.8) are valid, it would be interesting
to be able to determine the frame {K} in which is coupling is minimal.

4.4 Example 1 - 6DoF manipulator (3D)

Let’s define the geometry of the manipulator (Mb;, Ms; and k;):

Matlab

ki
si
bi
= [015-1510,00515-10, 0051510, 015215 -10, 005 -15-1, 0151513, 00515210, 015215 =10, 00515210, [=151510, 01515211, 01515111-[0;2; 175

215
;0;01,[-1;0;01,[0;0;11,[0;0;11,[0;0;11,[0;0;11,[0;-1;01,[0;-1;01,[0;-1;0]1,[0;-1;011;

Cond 1:
Matlab
ki.xsixsi'
6 0 O
0 6 0
0 0 8
Find Ok
Matlab

OkX = (ki.*cross(bi, si)*si')/(ki.xsi*si');

if all(diag(OkX) == 0) && all(all((OkX + OkX') == 0))
disp('OkX is skew symmetric')
Ok = [OkX(3,2);0kX(1,3);0kX(2,1)]

else
error('OkX is *not* skew symmetric')

end
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-2
1
Matlab
si*cross(bi-Ok, si)'
0 0 O
0 0 O
0 0 O
Verification of third condition
Matlab
ki.*cross(bi-Ok, si)xcross(bi-Ok, si)'
14 4 -2
4 14 2
-2 2 12
Let’s compute the Jacobian:
Matlab
Jk = [si', cross(bi - Ok, si)'l];
And the stiffness matrix:
Matlab
Jk'*diag(ki)*Jk
6 0 O 0 0 0
0 6 0 0 0 0
0 0 8 0 0 0
0 0 0 14 4 -2
0 0 O 4 14 2
0O 0 0 -2 2 12
Matlab
figure;
hold on;

set(gca, 'ColorOrderIndex’
plot(b1(1), b1(2), '0");
set(gca, 'ColorOrderIndex',2)
plot(b2(1), b2(2), '0');
set(gca, 'ColorOrderIndex’
plot(b3(1), b3(2), '0");
set(gca, 'ColorOrderIndex',1)

quiver(b1(1),b1(2),0.1xs1(1),0.1%s1(2))
set(gca, 'ColorOrderIndex',2)

quiver(b2(1),b2(2),0.1*s2(1),0.1*s2(2))
set(gca, 'ColorOrderIndex',3)

)

3)
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quiver(b3(1),b3(2),0.1*s3(1),0.1*s3(2))

plot(e, @, 'ko');
quiver([o,e],[0,0],[0.1,0]1,[0,0.1], 'k')

plot(Ok(1), Ok(2), 'ro');
quiver([Ok(1),0k(1)],[0k(2),0k(2)],[0.1,0],[0,0.1], 'r")

hold off;
axis equal;

4.5 Example 2 - Stewart Platform
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5 Stiffness and Mass Matrices in the Leg's
frame

5.1 Equations

Equations in the {M} frame:
(M(arys® + Kqwy) Xy = Fran (5.1)

Thank to the Jacobian, we can transform the equation of motion expressed in the {M} frame to the
frame of the legs:
-T 2 -1 /5
J{M} (M{M}S JrK{M}) J{JW}EZT (5.2)

And we have new stiffness and mass matrices:
(Mypys* + Kqpy) L =1 (5.3)
with:
e The local mass matrix:

- -1
My = JoanMon Jon

e The local stiffness matrix:

-T —
Ky = J{M}K{M}J{]\}I}

5.2 Stiffness matrix

We have that:
Koy = Thn Ko

Therefore, we find that K, is a diagonal matrix:

ky 0
0 K

The dynamics from 7 to L is therefore decoupled at low frequency.
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5.3 Mass matrix

The mass matrix in the frames of the legs is:

-T _
My = Jon Moy T,

with My a diagonal matrix:

Miny =

Let’s suppose M{r) = M diagonal and try to find what does this imply:

My = J{TM}MJ{M}

with:
mi 0
M =
0 My,
We obtain:
ml§z§1T miéi(bi X §z T
My = kidi(b; X § ‘

mlél(bl X §1)T = 03
mi(b; x §;)(b; x 8)7 = diag(I,, I,,1,)

5.4 Planar Example

M

The stiffnesses k;, the joint positions M b; and joint unit vectors M 3; are defined below:

Matlab

(5.7)

ki =[1,1,11;
si = [[1;01,00;11,[0;11]; si = si./vecnorm(si);
bi = [[-1; e],[-10;-1]1,[0;-11];

Jacobian in frame {M}:
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Matlab

Jm = [si', (bi(1,:).*si(2,:) - bi(2,:).*si(1,:))'];

And the stiffness matrix in frame {K}:

Matlab
Km = Jm'*diag(ki)*Jm;
2 0 1
0o 1 -1
1 -1 2
Mass matrix in the frame {M}:
Matlab
m=10;
I=1;
Mm = diag(lm, m, I1);
Now compute K and M in the frame of the legs:
Matlab
ML = inv(Jm) '*Mm*inv(Im)
KL = inv(JIm) '*Km*inv(Jm)
Matlab
Gm = 1/(ML*s*2 + KL);
Matlab
fregs = logspace(-2, 1, 1000);
figure;
hold on;

for i = 1:length(ki)
plot(fregs, abs(squeeze(freqresp(Gm(i,i), fregs, 'Hz'))), 'k-')
end
for i = 1:length(ki)
for j = i+1:length(ki)
plot(fregs, abs(squeeze(freqresp(Gm(i,j), fregs, 'Hz'))), 'r-')
end
end
hold off;
xlabel('Frequency [Hz]');
ylabel('Magnitude');
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');

51



6 Stewart Platform - Simscape Model

In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure 6.1.
Some notes about the system:
e 6 voice coils actuators are used to control the motion of the top platform.

e the motion of the top platform is measured with a 6-axis inertial unit (3 acceleration + 3 angular
accelerations)

e the control objective is to isolate the top platform from vibrations coming from the bottom
platform

Top platform

Coil

Non-contact
voice coil
actuator

Permanent
magnet

Adjustable springs Bottom platform

Figure 6.1: Stewart Platform CAD View

The analysis of the SVD/Jacobian control applied to the Stewart platform is performed in the following
sections:

e Section 6.1: The parameters of the Simscape model of the Stewart platform are defined
e Section 6.2: The plant is identified from the Simscape model and the system coupling is shown
e Section 6.3: The plant is first decoupled using the Jacobian

e Section 6.4: The decoupling is performed thanks to the SVD. To do so a real approximation of
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the plant is computed.

Section 6.5: The effectiveness of the decoupling with the Jacobian and SVD are compared using
the Gershorin Radii

Section 6.6:

Section 6.7: The dynamics of the decoupled plants are shown

Section 6.8: A diagonal controller is defined to control the decoupled plant

Section 6.9: Finally, the closed loop system properties are studied

6.1 Simscape Model - Parameters

Matlab

open('drone_platform.slx");

Definition of spring parameters:

Matlab

0.5%1e3/3;
0.5%1e3/3;
1e3/3;

X
<
mnwon

0.025;
0.025;
0.025;

(s}
<
o n

We suppose the sensor is perfectly positioned.

Matlab

sens_pos_error = zeros(3,1);

Gravity:

Matlab

g=0;

We load the Jacobian (previously computed from the geometry):

Matlab
load('jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J");

We initialize other parameters:
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Matlab

U = eye(6);
V = eye(6);
Kc = tf(zeros(6));

Plant
zeros(6,1) » Dw | : - Ground Fr
Dw
COM
Ground » u
Stewart platform

Inertial Sensor

SVD Controller

inv(transpose(V))*u

V-T

Kc

Kc

inv(U)*u 1«

Figure 6.2: General view of the Simscape Model

6.2 ldentification of the plant

The plant shown in Figure 6.4 is identified from the Simscape model.

The inputs are:

e D, translation and rotation of the bottom platform (with respect to the center of mass of the top

platform)

e 7 the 6 forces applied by the voice coils

The outputs are the 6 accelerations measured by the inertial unit.

Matlab
mdl = 'drone_platform';
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Dw'l], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/V-T'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1;
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=
O
Top platform
COM

Figure 6.3: Simscape model of the Stewart platform

G
D,
i e
T G,
—>

Figure 6.4: Considered plant G = {gd} . D, is the translation/rotation of the support, 7 the actuator
u

forces, a the acceleration/angular acceleration of the top platform
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G = linearize(mdl, io);

G.InputName = {'Dwx', 'Dwy', ‘Dwz', 'Rwx', 'Rwy', 'Rwz’
'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};

G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};

5 ooo

Gu = G(:, {'F1", 'F2', 'F3', 'F4', 'F5', 'F6'});

Gd = G(:, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'});

There are 24 states (6dof for the bottom platform + 6dof for the top platform).

Matlab

size(G)

Results

State-space model with 6 outputs, 12 inputs, and 24 states.

The elements of the transfer matrix G' corresponding to the transfer function from actuator forces 7 to
the measured acceleration a are shown in Figure 6.5.

One can easily see that the system is strongly coupled.

Magnitude

10?

Frequency [Hz]

Figure 6.5: Magnitude of all 36 elements of the transfer function matrix G,

6.3 Decoupling using the Jacobian

Consider the control architecture shown in Figure 6.6. The Jacobian matrix is used to transform
forces/torques applied on the top platform to the equivalent forces applied by each actuator.

The Jacobian matrix is computed from the geometry of the platform (position and orientation of the
actuators).
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Table 6.1: Computed Jacobian Matrix
0.811 0.0 0.584 -0.018 -0.008 0.025
-0.406 -0.703 0.584 -0.016 -0.012 -0.025
-0.406  0.703 0.584 0.016 -0.012 0.025
0.811 0.0 0.584 0.018 -0.008 -0.025
-0.406 -0.703 0.584  0.002 0.019 0.025
-0.406  0.703 0.584 -0.002 0.019 -0.025

Figure 6.6: Decoupled plant G, using the Jacobian matrix J

We define a new plant:

G.(s)=G(s)J T

G, (s) correspond to the transfer function from forces and torques applied to the top platform to the
absolute acceleration of the top platform.

Matlab

Gx = Guxinv(J');
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};

6.4 Decoupling using the SVD

In order to decouple the plant using the SVD, first a real approximation of the plant transfer function
matrix as the crossover frequency is required.

Let’s compute a real approximation of the complex matrix H; which corresponds to the the transfer
function G, (jw.) from forces applied by the actuators to the measured acceleration of the top platform
evaluated at the frequency w,.

Matlab
wCc = 2*pix30;
H1 = evalfr(Gu, j*wc);
The real approximation is computed as follows:

Matlab

D = pinv(real (H1'%H1));
H1 = inv(D*real (H1'*diag(exp(j*angle(diag(H1*D*H1."'))/2))));

Note that the plant G, at w,. is already an almost real matrix. This can be seen on the Bode plots
where the phase is close to 1. This can be verified below where only the real value of G, (w.) is shown

57



Table 6.2: Real approximate of G at the decoupling frequency w,
44 -2.1 -2.1 44 24 -2.4
-0.2 -3.9 3.9 0.2 -3.8 3.8
3.4 3.4 3.4 34 34 3.4
-367.1 -323.8 323.8 367.1 43.3  -43.3
-162.0 -237.0 -237.0 -162.0 398.9 398.9
220.6 -220.6 220.6 -220.6 220.6 -220.6

Table 6.3: Real part of G at the decoupling frequency w,
4.4 -2.1 -2.1 4.4 -2.4 -2.4
-0.2 -3.9 3.9 0.2 -3.8 3.8
3.4 3.4 3.4 3.4 3.4 3.4
-367.1 -323.8 323.8 367.1 43.3 -433
-162.0 -237.0 -237.0 -162.0 398.9 398.9
220.6 -220.6 220.6 -220.6 220.6 -220.6

Now, the Singular Value Decomposition of H; is performed:

H, =UXVH

Matlab

[U,~,V] = svd(H1);

Table 6.4: Obtained matrix U

-0.005  7e-06  6Ge-11 -3e-06 -1 0.1
-7e-06  -0.005 -9e-09 -5e-09 -0.1 -1
4e-08 -2e-10 -6e-11 -1 3e-06 -3e-07
-0.002 -1 -5e-06  2e-10 0.0006  0.005

1 -0.002 -1e-08 2e-08 -0.005 0.0006
-4e-09  5e-06 -1 6e-11  -2e-09 -1e-08

The obtained matrices U and V are used to decouple the system as shown in Figure 6.7.

The decoupled plant is then:
Gsvp(s) =U'Gu(s)V "

Matlab

Gsvd = inv(U)*Guxinv(V');

6.5 Verification of the decoupling using the “Gershgorin Radii”

The “Gershgorin Radii” is computed for the coupled plant G(s), for the “Jacobian plant” G, (s) and the
“SVD Decoupled Plant” Ggy p(s):
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Table 6.5: Obtained matrix V'
-0.2 0.5 -04 -04 -0.6 -0.2
-0.3 0.5 04 -04 0.5 0.3
-0.3 -05 -04 -04 04 -04
-02 -05 04 -04 -0.5 0.3

0.6 -0.06 -04 -0.4 0.1 0.6
0.6 006 04 -04 -0.006 -0.6

Figure 6.7: Decoupled plant Ggy p using the Singular Value Decomposition

The “Gershgorin Radii” of a matrix S is defined by:

; 135 (jw)|
Giljw) = ”7
U9 = g G

This is computed over the following frequencies.

Coupled 1
E.'é Jacobian ]
<
[ae]
=]
s 100
Q0
=
z
3)
@)
1072

107! 10° 10! 107
Frequency (Hz)

Figure 6.8: Gershgorin Radii of the Coupled and Decoupled plants

6.6 Verification of the decoupling using the “Relative Gain
Array”

The relative gain array (RGA) is defined as:

(6.1)

59



where x denotes an element by element multiplication and G(s) is an n X n square transfer matrix.

The obtained RGA elements are shown in Figure 6.9.

101 F H T TTYT T Ty T T T ""': T LTI R A | T Ty T g
§ Eor
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Iy 11 \
_ 7 \ 1) \
3L 4 L 4
11 1 ] \
i () ! \
1074 L e 4L v
: 11 ] Vg
RGAgyp(i,5), i # j| 1 RGAx(i,j), i#j| V ]
RGAgyp(i,1) 1 RGAx(i,1) \
1 1 -J ot 1 1 \
107! 100 10! 1021071 10° 10* 102
Frequency [Hz] Frequency [Hz]

Figure 6.9: Obtained norm of RGA elements for the SVD decoupled plant and the Jacobian decoupled
plant

6.7 Obtained Decoupled Plants
The bode plot of the diagonal and off-diagonal elements of Ggy p are shown in Figure 6.10.

Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant
G(s) using the Jacobian are shown in Figure 6.11.

6.8 Diagonal Controller
The control diagram for the centralized control is shown in Figure 6.12.

The controller K, is “working” in an cartesian frame. The Jacobian is used to convert forces in the
cartesian frame to forces applied by the actuators.
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. Gsvp(i;j), i #J
104 L _GSVD(lal)

Gsvp(2,2)
Gsvp(3,3)
——Gsyp(4,4)
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Gsvp(6,6)
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Figure 6.10: Decoupled Plant using SVD

The SVD control architecture is shown in Figure 6.13. The matrices U and V are used to decoupled
the plant G.

We choose the controller to be a low pass filter:

Go

K.(s)

G is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is
equal to w,

Matlab
wc = 2*%pi*80; % Crossover Frequency [rad/s]
w0 = 2*pi*@.1; % Controller Pole [rad/s]
Matlab
K_cen = diag(1./diag(abs(evalfr(Gx, j*wc))))*(1/abs(evalfr(1/(1 + s/w@), j*wc)))/(1 + s/wl);
L_cen = K_cen*Gx;
G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]1);
Matlab
K_svd = diag(1./diag(abs(evalfr(Gsvd, j*wc))))*(1/abs(evalfr(1/(1 + s/w@), j*wc)))/(1 + s/w0);
L_svd = K_svdxGsvd;
G_svd = feedback(G, inv(V')*K_svdxinv(U), [7:12]1, [1:61);
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Figure 6.11: Stewart Platform Plant from forces (resp. torques) applied by the legs to the acceleration
(resp. angular acceleration) of the platform as well as all the coupling terms between the
two (non-diagonal terms of the transfer function matrix)
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Figure 6.12: Control Diagram for the Centralized control
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Figure 6.13: Control Diagram for the SVD control
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The obtained diagonal elements of the loop gains are shown in Figure 6.14.
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Figure 6.14: Comparison of the diagonal elements of the loop gains for the SVD control architecture
and the Jacobian one

6.9 Closed-Loop system Performances

Let’s first verify the stability of the closed-loop systems:

Matlab
isstable(G_cen)
Results
ans =
logical
1
Matlab

isstable(G_svd)
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Results

ans =
logical
1

The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control
are shown in Figure 6.15.
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Figure 6.15: Obtained Transmissibility
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