%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); addpath('STEP'); % Jacobian % First, the position of the "joints" (points of force application) are estimated and the Jacobian computed. open('drone_platform_jacobian.slx'); sim('drone_platform_jacobian'); Aa = [a1.Data(1,:); a2.Data(1,:); a3.Data(1,:); a4.Data(1,:); a5.Data(1,:); a6.Data(1,:)]'; Ab = [b1.Data(1,:); b2.Data(1,:); b3.Data(1,:); b4.Data(1,:); b5.Data(1,:); b6.Data(1,:)]'; As = (Ab - Aa)./vecnorm(Ab - Aa); l = vecnorm(Ab - Aa)'; J = [As' , cross(Ab, As)']; save('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J'); % Simscape Model open('drone_platform.slx'); % Definition of spring parameters kx = 0.5*1e3/3; % [N/m] ky = 0.5*1e3/3; kz = 1e3/3; cx = 0.025; % [Nm/rad] cy = 0.025; cz = 0.025; % We load the Jacobian. load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J'); % Identification of the plant % The dynamics is identified from forces applied by each legs to the measured acceleration of the top platform. %% Name of the Simulink File mdl = 'drone_platform'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1; G = linearize(mdl, io); G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ... 'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}; % There are 24 states (6dof for the bottom platform + 6dof for the top platform). size(G) % #+RESULTS: % : State-space model with 6 outputs, 12 inputs, and 24 states. % G = G*blkdiag(inv(J), eye(6)); % G.InputName = {'Dw1', 'Dw2', 'Dw3', 'Dw4', 'Dw5', 'Dw6', ... % 'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; % Thanks to the Jacobian, we compute the transfer functions in the frame of the legs and in an inertial frame. Gx = G*blkdiag(eye(6), inv(J')); Gx.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ... 'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; Gl = J*G; Gl.OutputName = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'}; % Obtained Dynamics freqs = logspace(-1, 2, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$A_x/F_x$'); plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$A_y/F_y$'); plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$A_z/F_z$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); legend('location', 'southeast'); ax2 = subplot(2, 1, 2); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-360:90:360]); linkaxes([ax1,ax2],'x'); % #+name: fig:stewart_platform_translations % #+caption: Stewart Platform Plant from forces applied by the legs to the acceleration of the platform % #+RESULTS: % [[file:figs/stewart_platform_translations.png]] freqs = logspace(-1, 2, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$A_{R_x}/M_x$'); plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$A_{R_y}/M_y$'); plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$A_{R_z}/M_z$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [rad/(Nm)]'); set(gca, 'XTickLabel',[]); legend('location', 'southeast'); ax2 = subplot(2, 1, 2); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-360:90:360]); linkaxes([ax1,ax2],'x'); % #+name: fig:stewart_platform_rotations % #+caption: Stewart Platform Plant from torques applied by the legs to the angular acceleration of the platform % #+RESULTS: % [[file:figs/stewart_platform_rotations.png]] freqs = logspace(-1, 2, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for out_i = 1:5 for in_i = i+1:6 plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', out_i), sprintf('F%i', in_i)), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end for ch_i = 1:6 plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', ch_i), sprintf('F%i', ch_i)), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for ch_i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(sprintf('A%i', ch_i), sprintf('F%i', ch_i)), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-360:90:360]); linkaxes([ax1,ax2],'x'); % #+name: fig:stewart_platform_legs % #+caption: Stewart Platform Plant from forces applied by the legs to displacement of the legs % #+RESULTS: % [[file:figs/stewart_platform_legs.png]] freqs = logspace(-1, 2, 1000); figure; ax1 = subplot(2, 1, 1); hold on; % plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$'); % plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$'); % plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$'); set(gca,'ColorOrderIndex',1) plot(freqs, abs(squeeze(freqresp(TR(1,1), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); plot(freqs, abs(squeeze(freqresp(TR(2,2), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); plot(freqs, abs(squeeze(freqresp(TR(3,3), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - Translations'); xlabel('Frequency [Hz]'); legend('location', 'northeast'); ax2 = subplot(2, 1, 2); hold on; % plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$'); % plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$'); % plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$'); set(gca,'ColorOrderIndex',1) plot(freqs, abs(squeeze(freqresp(TR(4,4), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); plot(freqs, abs(squeeze(freqresp(TR(5,5), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); plot(freqs, abs(squeeze(freqresp(TR(6,6), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - Rotations'); xlabel('Frequency [Hz]'); legend('location', 'northeast'); linkaxes([ax1,ax2],'x'); % Real Approximation of $G$ at the decoupling frequency % Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$. wc = 2*pi*20; % Decoupling frequency [rad/s] Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ... {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation H1 = evalfr(Gc, j*wc); % The real approximation is computed as follows: D = pinv(real(H1'*H1)); H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2)))); % Verification of the decoupling using the "Gershgorin Radii" % First, the Singular Value Decomposition of $H_1$ is performed: % \[ H_1 = U \Sigma V^H \] [U,S,V] = svd(H1); % Then, the "Gershgorin Radii" is computed for the plant $G_c(s)$ and the "SVD Decoupled Plant" $G_d(s)$: % \[ G_d(s) = U^T G_c(s) V \] % This is computed over the following frequencies. freqs = logspace(-2, 2, 1000); % [Hz] % Gershgorin Radii for the coupled plant: Gr_coupled = zeros(length(freqs), size(Gc,2)); H = abs(squeeze(freqresp(Gc, freqs, 'Hz'))); for out_i = 1:size(Gc,2) Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); end % Gershgorin Radii for the decoupled plant using SVD: Gd = U'*Gc*V; Gr_decoupled = zeros(length(freqs), size(Gd,2)); H = abs(squeeze(freqresp(Gd, freqs, 'Hz'))); for out_i = 1:size(Gd,2) Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); end % Gershgorin Radii for the decoupled plant using the Jacobian: Gj = Gc*inv(J'); Gr_jacobian = zeros(length(freqs), size(Gj,2)); H = abs(squeeze(freqresp(Gj, freqs, 'Hz'))); for out_i = 1:size(Gj,2) Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); end figure; hold on; plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled'); plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD'); plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian'); for in_i = 2:6 set(gca,'ColorOrderIndex',1) plot(freqs, Gr_coupled(:,in_i), 'HandleVisibility', 'off'); set(gca,'ColorOrderIndex',2) plot(freqs, Gr_decoupled(:,in_i), 'HandleVisibility', 'off'); set(gca,'ColorOrderIndex',3) plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off'); end plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit') set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); hold off; xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii') legend('location', 'northeast'); % Decoupled Plant % Let's see the bode plot of the decoupled plant $G_d(s)$. % \[ G_d(s) = U^T G_c(s) V \] freqs = logspace(-1, 2, 1000); figure; hold on; for ch_i = 1:6 plot(freqs, abs(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz'))), ... 'DisplayName', sprintf('$G(%i, %i)$', ch_i, ch_i)); end for in_i = 1:5 for out_i = in_i+1:6 plot(freqs, abs(squeeze(freqresp(Gd(out_i, in_i), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); legend('location', 'southeast'); % #+name: fig:simscape_model_decoupled_plant_svd % #+caption: Decoupled Plant using SVD % #+RESULTS: % [[file:figs/simscape_model_decoupled_plant_svd.png]] freqs = logspace(-1, 2, 1000); figure; hold on; for ch_i = 1:6 plot(freqs, abs(squeeze(freqresp(Gj(ch_i, ch_i), freqs, 'Hz'))), ... 'DisplayName', sprintf('$G(%i, %i)$', ch_i, ch_i)); end for in_i = 1:5 for out_i = in_i+1:6 plot(freqs, abs(squeeze(freqresp(Gj(out_i, in_i), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); legend('location', 'southeast'); % Diagonal Controller % The controller $K$ is a diagonal controller consisting a low pass filters with a crossover frequency $\omega_c$ and a DC gain $C_g$. wc = 2*pi*0.1; % Crossover Frequency [rad/s] C_g = 50; % DC Gain K = eye(6)*C_g/(s+wc); % #+RESULTS: % [[file:figs/centralized_control.png]] G_cen = feedback(G, inv(J')*K, [7:12], [1:6]); % #+RESULTS: % [[file:figs/svd_control.png]] % SVD Control G_svd = feedback(G, pinv(V')*K*pinv(U), [7:12], [1:6]); % Results % Let's first verify the stability of the closed-loop systems: isstable(G_cen) % #+RESULTS: % : ans = % : logical % : 1 isstable(G_svd) % #+RESULTS: % : ans = % : logical % : 0 % The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]]. freqs = logspace(-3, 3, 1000); figure ax1 = subplot(2, 3, 1); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop'); plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized'); plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'SVD'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - $D_x/D_{w,x}$'); xlabel('Frequency [Hz]'); legend('location', 'southwest'); ax2 = subplot(2, 3, 2); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - $D_y/D_{w,y}$'); xlabel('Frequency [Hz]'); ax3 = subplot(2, 3, 3); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - $D_z/D_{w,z}$'); xlabel('Frequency [Hz]'); ax4 = subplot(2, 3, 4); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - $R_x/R_{w,x}$'); xlabel('Frequency [Hz]'); ax5 = subplot(2, 3, 5); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - $R_y/R_{w,y}$'); xlabel('Frequency [Hz]'); ax6 = subplot(2, 3, 6); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Transmissibility - $R_z/R_{w,z}$'); xlabel('Frequency [Hz]'); linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x'); xlim([freqs(1), freqs(end)]);