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In this document, the use of the Jacobian matrix and the Singular Value Decomposition to render a
physical plant diagonal dominant is studied. Then, a diagonal controller is used.

These two methods are tested on two plants:
e In Section 1 on a 3-DoF gravimeter

e In Section 2 on a 6-DoF Stewart platform



1 Gravimeter - Simscape Model

1.1 Introduction

In this part, diagonal control using both the SVD and the Jacobian matrices are applied on a gravimeter
model:

Section 1.2: the model is described and its parameters are defined.

Section 1.3: the plant dynamics from the actuators to the sensors is computed from a Simscape
model.

Section 1.4: the plant is decoupled using the Jacobian matrices.

Section 1.5: the Singular Value Decomposition is performed on a real approximation of the plant
transfer matrix and further use to decouple the system.

Section 1.6: the effectiveness of the decoupling is computed using the Gershorin radii

Section 1.7: the effectiveness of the decoupling is computed using the Relative Gain Array
Section 1.8: the obtained decoupled plants are compared

Section 1.9: the diagonal controller is developed

Section 1.10: the obtained closed-loop performances for the two methods are compared

1.2 Gravimeter Model - Parameters

The model of the gravimeter is schematically shown in Figure 1.1.

The parameters used for the simulation are the following:

Matlab
1 =1.0;
h =1.7;
la = 1/2;
ha = h/2;

m=
=

k
c

400;
115;

15e3;
2el;
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Figure 1.1: Model of the gravimeter

Figure 1.2: Model of the struts

1.3 System ldentification

Matlab
mdl = 'gravimeter'
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F1'1, 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'l], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'l], 2, 'openoutput'); io_i = io_i + 1;

G = linearize(mdl, io);
G.InputName = {'F1', '
G.OutputName = {'Ax1"',

F2', 'F3'};

'Ayl', 'Ax2', 'Ay2'};

The inputs and outputs of the plant are shown in Figure 1.3.



More precisely there are three inputs (the three actuator forces):

1

T = (T2
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And 4 outputs (the two 2-DoF accelerometers):
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Figure 1.3: Schematic of the gravimeter plant

We can check the poles of the plant:

-0.12243+13.5511
-0.12243-13.551i
-0.05+8.66011
-0.05-8.6601i
-0.0088785+-3.64931
-0.0088785-3.64931

As expected, the plant as 6 states (2 translations + 1 rotation)

Matlab

size(G)

Results

State-space model with 4 outputs, 3 inputs, and 6 states.

The bode plot of all elements of the plant are shown in Figure 1.4.

1.4 Decoupling using the Jacobian

Consider the control architecture shown in Figure 1.5.
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Figure 1.4: Open Loop Transfer Function from 3 Actuators to 4 Accelerometers



The Jacobian matrix J; is used to transform forces applied by the three actuators into forces/torques
applied on the gravimeter at its center of mass:

T1 F,
| =J-T|F, (1.3)
73 ]V[z

The Jacobian matrix J, is used to compute the vertical acceleration, horizontal acceleration and rota-
tional acceleration of the mass with respect to its center of mass:

a Qg1
xT
_ Qq1
ay | =J;1 Y (1.4)
Qg2
(l}gz
Qy2

We thus define a new plant as defined in Figure 1.5.
G.(s)=J 'G(s)J T

G (s) correspond to the $3 x 3$transfer function matrix from forces and torques applied to the gravime-
ter at its center of mass to the absolute acceleration of the gravimeter’s center of mass (Figure 1.5).

e\ _ . Ay
F = ljb : G, A= Qy
M, |t :
> TS @ B Ut = i &

Figure 1.5: Decoupled plant G, using the Jacobian matrix J

The Jacobian corresponding to the sensors and actuators are defined below:

Matlab
Ja =1[10 -h/2
01 1/2
10 h/2
01 0];
Jt = [1 0 -ha
01 la
0 1 -lal;
And the plant G, is computed:
Matlab
Gx = pinv(Ja)*Gxpinv(Jt');
Gx.InputName = {'Fx', 'Fy', 'Mz'};
Gx.OutputName = {'Dx', 'Dy', 'Rz'};
Results

size(Gx)
State-space model with 3 outputs, 3 inputs, and 6 states.

The diagonal and off-diagonal elements of GG, are shown in Figure 1.6.
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Figure 1.6: Diagonal and off-diagonal elements of G
1.5 Decoupling using the SVD

In order to decouple the plant using the SVD, first a real approximation of the plant transfer function
matrix as the crossover frequency is required.

Let’s compute a real approximation of the complex matrix H; which corresponds to the the transfer
function G(jw,) from forces applied by the actuators to the measured acceleration of the top platform
evaluated at the frequency w..

Matlab
wec = 2*pix10;
H1 = evalfr(G, j*wc);
The real approximation is computed as follows:

Matlab

D = pinv(real(H1'%H1));
H1 = pinv(D*real (H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));

Table 1.1: Real approximate of G at the decoupling frequency w,
0.0092 -0.0039  0.0039
-0.0039  0.0048 0.00028
-0.004  0.0038 -0.0038
8.4e-09  0.0025  0.0025

Now, the Singular Value Decomposition of H; is performed:

H, =UXVH



Matlab

[U,S,V] = svd(H1);

Table 1.2: U matrix
-0.78 0.26 -0.53 -0.2

0.4 0.61 -0.04 -0.68
0.48 -0.14 -0.85 0.2
0.03 0.73 0.06 0.68

Table 1.3: V matrix
-0.79 0.11 -0.6
0.51 0.67 -0.54

-0.35 0.73 0.59

The obtained matrices U and V are used to decouple the system as shown in Figure 1.7.

Figure 1.7: Decoupled plant G gy p using the Singular Value Decomposition

The decoupled plant is then:
Gsvp(s) =U'G(s)VH

Matlab

Gsvd = inv(U)*Gxinv(V');

Results

size(Gsvd)
State-space model with 4 outputs, 3 inputs, and 6 states.

The 4th output (corresponding to the null singular value) is discarded, and we only keep the 3 x 3 plant:

Matlab

Gsvd = Gsvd(1:3, 1:3);

The diagonal and off-diagonal elements of the “SVD” plant are shown in Figure 1.8.
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Figure 1.8: Diagonal and off-diagonal elements of G,q
1.6 Verification of the decoupling using the “Gershgorin Radii”

The “Gershgorin Radii” is computed for the coupled plant G(s), for the “Jacobian plant” G.(s) and the
“SVD Decoupled Plant” Ggy p(s):

The “Gershgorin Radii” of a matrix S is defined by:

5 151
Ci(jw) = “—
|Sii (jw)
10? =
':_é‘
] 0 i
~ 107 ¢
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Figure 1.9: Gershgorin Radii of the Coupled and Decoupled plants
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1.7 Verification of the decoupling using the “Relative Gain
Array”

The relative gain array (RGA) is defined as:

A(G(s)) = G(s) x (G(s)™)"

(1.5)
where x denotes an element by element multiplication and G(s) is an n x n square transfer matrix.

The obtained RGA elements are shown in Figure 1.10.
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Figure 1.10: Obtained norm of RGA elements for the SVD decoupled plant and the Jacobian decou-
pled plant

The RGA-number is also a measure of diagonal dominance:

RGA-number = [|A(G) — I||sum (1.6)
1.8 Obtained Decoupled Plants

The bode plot of the diagonal and off-diagonal elements of Ggy p are shown in Figure 1.12

Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant
G, (s) using the Jacobian are shown in Figure 1.13.

11
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1.9 Diagonal Controller

The control diagram for the centralized control is shown in Figure 1.14.

The controller K, is “working” in an cartesian frame. The Jacobian is used to convert forces in the
cartesian frame to forces applied by the actuators.

G 1
K. Sl 15 ¢ B o g,

Figure 1.14: Control Diagram for the Centralized control

The SVD control architecture is shown in Figure 1.15. The matrices U and V are used to decoupled
the plant G.

T

S
Q
T
L\

Figure 1.15: Control Diagram for the SVD control

We choose the controller to be a low pass filter:

Go
K.(s) = 11 =
wo

G is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is
equal to w,

Matlab
wc = 2*pix10;
wo = 2*pi*0.1;
Matlab
K_cen = diag(1./diag(abs(evalfr(Gx, jxwc))))x(1/abs(evalfr(1/(1 + s/w@), j*wc)))/(1 + s/wo);
L_cen = K_cen*Gx;
G_cen = feedback(G, pinv(Jt')*K_cenxpinv(Ja));
Matlab
K_svd = diag(1./diag(abs(evalfr(Gsvd, jxwc))))*(1/zabs(evalfr(1/(1 + s/w@), j*wc)))/(1 + s/w0);
L_svd = K_svd*Gsvd;
U_inv = inv(U);
G_svd = feedback(G, inv(V')*K_svd*U_inv(1:3, :));

The obtained diagonal elements of the loop gains are shown in Figure 1.16.

14
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1.10 Closed-Loop system Performances

Let’s first verify the stability of the closed-loop systems:

Matlab
isstable(G_cen)
Results
ans =
logical
1
Matlab
isstable(G_svd)
Results

ans =
logical
1

The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control
are shown in Figure 1.17.

1.11 Robustness to a change of actuator position

Let say we change the position of the actuators:

Matlab

la = 1/2%0.7;
ha = h/2%0.7;

The new plant is computed, and the centralized and SVD control architectures are applied using the
previsouly computed Jacobian matrices and U and V' matrices.

The closed-loop system are still stable, and their

1.12 Combined / comparison of K and M decoupling

If we want to decouple the system at low frequency (determined by the stiffness matrix), we have to
compute the Jacobians at a point where the stiffness matrix is diagonal. A displacement (resp. rotation)
of the mass at this particular point should induce a pure force (resp. torque) on the same point due
to stiffnesses in the system. This can be verified by geometrical computations.

16
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Figure 1.19: Transmissibility for the initial CL system and when the position of actuators are changed

If we want to decouple the system at high frequency (determined by the mass matrix), we have tot
compute the Jacobians at the Center of Mass of the suspended solid. Similarly to the stiffness analysis,
when considering only the inertia effects (neglecting the stiffnesses), a force (resp. torque) applied at
this point (the center of mass) should induce a pure acceleration (resp. angular acceleration).

Ideally, we would like to have a decoupled mass matrix and stiffness matrix at the same time. To do so,

the actuators (springs) should be positioned such that the stiffness matrix is diagonal when evaluated
at the CoM of the solid.

1.12.1 Decoupling of the mass matrix

=

o

h

o

Figure 1.20: Choice of {O} such that the Mass Matrix is Diagonal

Matlab
la = 1/2;
ha = h/2;

Matlab
mdl = 'gravimeter';

18



clear io; io_i = 1;

io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'1, 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); do_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'l, 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'l, 2, 'openoutput'); io_i = io_i + 1;

G = linearize(mdl, io);
G.InputName = {'F1', 'F2', 'F3'};
G.OutputName = {'Ax1', 'Ayl', 'Ax2', 'Ay2'};

Decoupling at the CoM (Mass decoupled)

Matlab

JMa = [1 @ -h/2
01 1/2
10 h/2
01 0l;

IMt = [1 @ -ha
01 la
0 1 -lal;

Matlab

GM = pinv(JIMa)*G*pinv(JMt');
GM.InputName = {'Fx', 'Fy', 'Mz'};
GM.OutputName = {'Dx', 'Dy', 'Rz'};

100 : :

—_
<
[V}

Magnitude
2

Go(i,§) i #j
1076 G.(1,1) .
1 —,(2,2)
A | Ga(3,3)
1()-8 L . F A i\ | i HEHEHEHEHE | i i HEHEEH
107! 10° 10! 102

Frequency [Hz]

Figure 1.21: Diagonal and off-diagonal elements of the decoupled plant

1.12.2 Decoupling of the stiffness matrix

Decoupling at the point where K is diagonal (x = 0, y = -h/2 from the schematic {O} frame):

19
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Matlab

JKa = [
-1/2

o - —
- -

ol;

JKt = [1

S
- o
S}

-la
01 lal;

And the plant G, is computed:

Matlab

GK = pinv(JKa)*Gxpinv(JKt');
GK.InputName = {'Fx"', 'Fy', 'Mz'};
GK.OutputName = {'Dx', 'Dy', 'Rz'};

—_
S
[V}

Magnitude
=

—_
9
(=2

10—8: : e I\ A
1071 100 10! 102

Frequency [Hz]

Figure 1.23: Diagonal and off-diagonal elements of the decoupled plant

1.12.3 Combined decoupling of the mass and stiffness matrices

To do so, the actuator position should be modified

20
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Figure 1.24: Ideal location of the actuators such that both the mass and stiffness matrices are diagonal

Matlab
la = 1/2;
ha = 0;

Matlab
mdl = 'gravimeter'

clear io; io_i = 1;

io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); ido_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'1, 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); do_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'l, 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'l], 2, 'openoutput'); io_i = io_i + 1;
G = linearize(mdl, io);
G.InputName = {'F1', 'F2', 'F3'};
G.OutputName = {'Ax1"', 'Ayl', 'Ax2', 'Ay2'};
Matlab
JMa = [1 0 -h/2
01 1/2
10 h/2
01 0l;
JMt = [1 0 -ha
01 la
0 1 -lal;
Matlab

GKM = pinv(JMa)*G*pinv(IMt');
GKM.InputName = {'Fx', 'Fy', 'Mz'};
GKM.OutputName = {'Dx', 'Dy', 'Rz'};

1.12.4 Conclusion

Ideally, the mechanical system should be designed in order to have a decoupled stiffness matrix at the
CoM of the solid.

21
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Figure 1.25: Diagonal and off-diagonal elements of the decoupled plant

If not the case, the system can either be decoupled as low frequency if the Jacobian are evaluated at a
point where the stiffness matrix is decoupled. Or it can be decoupled at high frequency if the Jacobians
are evaluated at the CoM.

1.13 SVD decoupling performances

As the SVD is applied on a real approximation of the plant dynamics at a frequency wy, it is foreseen
that the effectiveness of the decoupling depends on the validity of the real approximation.

Let’s do the SVD decoupling on a plant that is mostly real (low damping) and one with a large imaginary
part (larger damping).

Start with small damping, the obtained diagonal and off-diagonal terms are shown in Figure 1.26.

Matlab

c = 2el;

Now take a larger damping, the obtained diagonal and off-diagonal terms are shown in Figure 1.27.

Matlab

c = 5e2;

22
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Figure 1.26: Diagonal and off-diagonal term when decoupling with SVD on the gravimeter with small
damping
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Figure 1.27: Diagonal and off-diagonal term when decoupling with SVD on the gravimeter with high
damping
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2 Stewart Platform - Simscape Model

In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure 2.1.
Some notes about the system:
e 6 voice coils actuators are used to control the motion of the top platform.

e the motion of the top platform is measured with a 6-axis inertial unit (3 acceleration + 3 angular
accelerations)

e the control objective is to isolate the top platform from vibrations coming from the bottom
platform

Top platform

Coil

Non-contact
voice coil
actuator

Permanent
magnet

Adjustable springs Bottom platform

Figure 2.1: Stewart Platform CAD View

The analysis of the SVD/Jacobian control applied to the Stewart platform is performed in the following
sections:

e Section 2.1: The parameters of the Simscape model of the Stewart platform are defined
e Section 2.2: The plant is identified from the Simscape model and the system coupling is shown
e Section 2.3: The plant is first decoupled using the Jacobian

e Section 2.4: The decoupling is performed thanks to the SVD. To do so a real approximation of

24



the plant is computed.

Section 2.5: The effectiveness of the decoupling with the Jacobian and SVD are compared using
the Gershorin Radii

Section 2.6:

Section 2.7: The dynamics of the decoupled plants are shown

Section 2.8: A diagonal controller is defined to control the decoupled plant

Section 2.9: Finally, the closed loop system properties are studied

2.1 Simscape Model - Parameters

Matlab

open('drone_platform.slx");

Definition of spring parameters:

Matlab

0.5%1e3/3;
0.5%1e3/3;
1e3/3;

X
<
mnwon

0.025;
0.025;
0.025;

(s}
<
o n

We suppose the sensor is perfectly positioned.

Matlab

sens_pos_error = zeros(3,1);

Gravity:

Matlab

g=0;

We load the Jacobian (previously computed from the geometry):

Matlab
load('jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J");

We initialize other parameters:

25



Matlab

U = eye(6);
V = eye(6);
Kc = tf(zeros(6));

Plant
zeros(6,1) » Dw | : - Ground Fr
Dw
COM
Ground » u
Stewart platform

Inertial Sensor

SVD Controller

inv(transpose(V))*u

V-T

Kc

Kc

inv(U)*u 1«

Figure 2.2: General view of the Simscape Model

2.2 ldentification of the plant

The plant shown in Figure 2.4 is identified from the Simscape model.

The inputs are:

e D, translation and rotation of the bottom platform (with respect to the center of mass of the top

platform)

e 7 the 6 forces applied by the voice coils

The outputs are the 6 accelerations measured by the inertial unit.

Matlab
mdl = 'drone_platform';
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Dw'l], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/V-T'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1;
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Figure 2.4: Considered plant G = {gd} . D, is the translation/rotation of the support, 7 the actuator
u

forces, a the acceleration/angular acceleration of the top platform
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G = linearize(mdl, io);

G.InputName = {'Dwx', 'Dwy', ‘Dwz', 'Rwx', 'Rwy', 'Rwz’
'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};

G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};

5 ooo

Gu = G(:, {'F1", 'F2', 'F3', 'F4', 'F5', 'F6'});

Gd = G(:, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'});

There are 24 states (6dof for the bottom platform + 6dof for the top platform).

Matlab

size(G)

Results

State-space model with 6 outputs, 12 inputs, and 24 states.

The elements of the transfer matrix G' corresponding to the transfer function from actuator forces 7 to
the measured acceleration a are shown in Figure 2.5.

One can easily see that the system is strongly coupled.

Magnitude

10?

Frequency [Hz]

Figure 2.5: Magnitude of all 36 elements of the transfer function matrix G,

2.3 Decoupling using the Jacobian

Consider the control architecture shown in Figure 2.6. The Jacobian matrix is used to transform
forces/torques applied on the top platform to the equivalent forces applied by each actuator.

The Jacobian matrix is computed from the geometry of the platform (position and orientation of the
actuators).
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Table 2.1: Computed Jacobian Matrix
0.811 0.0 0.584 -0.018 -0.008 0.025
-0.406 -0.703 0.584 -0.016 -0.012 -0.025
-0.406  0.703 0.584 0.016 -0.012 0.025
0.811 0.0 0.584 0.018 -0.008 -0.025
-0.406 -0.703 0.584  0.002 0.019 0.025
-0.406  0.703 0.584 -0.002 0.019 -0.025

Figure 2.6: Decoupled plant G, using the Jacobian matrix J

We define a new plant:
G.(s)=G(s)J T

G, (s) correspond to the transfer function from forces and torques applied to the top platform to the
absolute acceleration of the top platform.

Matlab

Gx = Guxinv(J');
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};

2.4 Decoupling using the SVD

In order to decouple the plant using the SVD, first a real approximation of the plant transfer function
matrix as the crossover frequency is required.

Let’s compute a real approximation of the complex matrix H; which corresponds to the the transfer
function G, (jw.) from forces applied by the actuators to the measured acceleration of the top platform
evaluated at the frequency w,.

Matlab
wCc = 2*pix30;
H1 = evalfr(Gu, j*wc);
The real approximation is computed as follows:

Matlab

D = pinv(real (H1'%H1));
H1 = inv(D*real (H1'*diag(exp(j*angle(diag(H1*D*H1."'))/2))));

Note that the plant G, at w,. is already an almost real matrix. This can be seen on the Bode plots
where the phase is close to 1. This can be verified below where only the real value of G, (w.) is shown
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Table 2.2: Real approximate of G at the decoupling frequency w,
44 -2.1 -2.1 44 24 -2.4
-0.2 -3.9 3.9 0.2 -3.8 3.8
3.4 3.4 3.4 34 34 3.4
-367.1 -323.8 323.8 367.1 43.3  -43.3
-162.0 -237.0 -237.0 -162.0 398.9 398.9
220.6 -220.6 220.6 -220.6 220.6 -220.6

Table 2.3: Real part of G at the decoupling frequency w,
4.4 -2.1 -2.1 4.4 -2.4 -2.4
-0.2 -3.9 3.9 0.2 -3.8 3.8
3.4 3.4 3.4 3.4 3.4 3.4
-367.1 -323.8 323.8 367.1 43.3 -433
-162.0 -237.0 -237.0 -162.0 398.9 398.9
220.6 -220.6 220.6 -220.6 220.6 -220.6

Now, the Singular Value Decomposition of H; is performed:

H, =UXVH

Matlab

[U,~,V] = svd(H1);

Table 2.4: Obtained matrix U

-0.005  7e-06  6Ge-11 -3e-06 -1 0.1
-7e-06  -0.005 -9e-09 -5e-09 -0.1 -1
4e-08 -2e-10 -6e-11 -1 3e-06 -3e-07
-0.002 -1 -5e-06  2e-10 0.0006  0.005

1 -0.002 -1e-08 2e-08 -0.005 0.0006
-4e-09  5e-06 -1 6e-11  -2e-09 -1e-08

The obtained matrices U and V are used to decouple the system as shown in Figure 2.7.

The decoupled plant is then:
Gsvp(s) =U'Gu(s)V "

Matlab

Gsvd = inv(U)*Guxinv(V');

2.5 Verification of the decoupling using the “Gershgorin Radii”

The “Gershgorin Radii” is computed for the coupled plant G(s), for the “Jacobian plant” G, (s) and the
“SVD Decoupled Plant” Ggy p(s):
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Table 2.5: Obtained matrix V'
-0.2 0.5 -04 -04 -0.6 -0.2
-0.3 0.5 04 -04 0.5 0.3
-0.3 -05 -04 -04 04 -04
-02 -05 04 -04 -0.5 0.3

0.6 -0.06 -04 -0.4 0.1 0.6
0.6 006 04 -04 -0.006 -0.6

Figure 2.7: Decoupled plant Ggy p using the Singular Value Decomposition

The “Gershgorin Radii” of a matrix S is defined by:

; 135 (jw)|
Giljw) = ”7
U9 = g G

This is computed over the following frequencies.

Coupled 1
E.'é Jacobian ]
<
[ae]
=]
s 100
Q0
=
z
3)
@)
1072

107! 10° 10! 107
Frequency (Hz)

Figure 2.8: Gershgorin Radii of the Coupled and Decoupled plants

2.6 Verification of the decoupling using the “Relative Gain
Array”

The relative gain array (RGA) is defined as:

(2.1)
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where x denotes an element by element multiplication and G(s) is an n X n square transfer matrix.

The obtained RGA elements are shown in Figure 2.9.
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Figure 2.9: Obtained norm of RGA elements for the SVD decoupled plant and the Jacobian decoupled
plant

2.7 Obtained Decoupled Plants
The bode plot of the diagonal and off-diagonal elements of Ggy p are shown in Figure 2.10.

Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant
G(s) using the Jacobian are shown in Figure 2.11.

2.8 Diagonal Controller
The control diagram for the centralized control is shown in Figure 2.12.

The controller K, is “working” in an cartesian frame. The Jacobian is used to convert forces in the
cartesian frame to forces applied by the actuators.
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Figure 2.10: Decoupled Plant using SVD

The SVD control architecture is shown in Figure 2.13. The matrices U and V are used to decoupled
the plant G.

We choose the controller to be a low pass filter:

Go

K.(s)

G is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is
equal to w,

Matlab
wc = 2*%pi*80; % Crossover Frequency [rad/s]
w0 = 2*pi*@.1; % Controller Pole [rad/s]
Matlab
K_cen = diag(1./diag(abs(evalfr(Gx, j*wc))))*(1/abs(evalfr(1/(1 + s/w@), j*wc)))/(1 + s/wl);
L_cen = K_cen*Gx;
G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]1);
Matlab
K_svd = diag(1./diag(abs(evalfr(Gsvd, j*wc))))*(1/abs(evalfr(1/(1 + s/w@), j*wc)))/(1 + s/w0);
L_svd = K_svdxGsvd;
G_svd = feedback(G, inv(V')*K_svdxinv(U), [7:12]1, [1:61);
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Figure 2.11: Stewart Platform Plant from forces (resp. torques) applied by the legs to the acceleration
(resp. angular acceleration) of the platform as well as all the coupling terms between the
two (non-diagonal terms of the transfer function matrix)
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Figure 2.12: Control Diagram for the Centralized control

G
Dy,
Gd a
T G, -

VT |« Ksyp [« U}

A

Figure 2.13: Control Diagram for the SVD control
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The obtained diagonal elements of the loop gains are shown in Figure 2.14.
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Figure 2.14: Comparison of the diagonal elements of the loop gains for the SVD control architecture
and the Jacobian one

2.9 Closed-Loop system Performances

Let’s first verify the stability of the closed-loop systems:

Matlab
isstable(G_cen)
Results
ans =
logical
1
Matlab

isstable(G_svd)
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Results

ans =
logical
1

The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control
are shown in Figure 2.15.
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Figure 2.15: Obtained Transmissibility
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