UP | HOME

SVD Control

Table of Contents

1 Gravimeter - Simscape Model

1.1 Simulink

open('gravimeter.slx')
%% Name of the Simulink File
mdl = 'gravimeter';

%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F1'], 1, 'openinput');  io_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'], 1, 'openinput');  io_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput');  io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;

G = linearize(mdl, io);
G.InputName  = {'F1', 'F2', 'F3'};
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};

The plant as 6 states as expected (2 translations + 1 rotation)

size(G)
State-space model with 4 outputs, 3 inputs, and 6 states.

open_loop_tf.png

Figure 1: Open Loop Transfer Function from 3 Actuators to 4 Accelerometers

2 Stewart Platform - Simscape Model

2.1 Jacobian

First, the position of the “joints” (points of force application) are estimated and the Jacobian computed.

open('stewart_platform/drone_platform_jacobian.slx');
sim('drone_platform_jacobian');
Aa = [a1.Data(1,:);
      a2.Data(1,:);
      a3.Data(1,:);
      a4.Data(1,:);
      a5.Data(1,:);
      a6.Data(1,:)]';

Ab = [b1.Data(1,:);
      b2.Data(1,:);
      b3.Data(1,:);
      b4.Data(1,:);
      b5.Data(1,:);
      b6.Data(1,:)]';

As = (Ab - Aa)./vecnorm(Ab - Aa);

l = vecnorm(Ab - Aa)';

J = [As' , cross(Ab, As)'];

save('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');

2.2 Simscape Model

open('stewart_platform/drone_platform.slx');

Definition of spring parameters

kx = 50; % [N/m]
ky = 50;
kz = 50;

cx = 0.025; % [Nm/rad]
cy = 0.025;
cz = 0.025;

We load the Jacobian.

load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');

2.3 Identification of the plant

The dynamics is identified from forces applied by each legs to the measured acceleration of the top platform.

%% Name of the Simulink File
mdl = 'drone_platform';

%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Dw'],              1, 'openinput');  io_i = io_i + 1;
io(io_i) = linio([mdl, '/u'],               1, 'openinput');  io_i = io_i + 1;
io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1;

G = linearize(mdl, io);
G.InputName  = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
                'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};

There are 24 states (6dof for the bottom platform + 6dof for the top platform).

size(G)
State-space model with 6 outputs, 12 inputs, and 24 states.
% G = G*blkdiag(inv(J), eye(6));
% G.InputName  = {'Dw1', 'Dw2', 'Dw3', 'Dw4', 'Dw5', 'Dw6', ...
%                 'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};

Thanks to the Jacobian, we compute the transfer functions in the frame of the legs and in an inertial frame.

Gx = G*blkdiag(eye(6), inv(J'));
Gx.InputName  = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
                 'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};

Gl = J*G;
Gl.OutputName  = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};

2.4 Obtained Dynamics

stewart_platform_translations.png

Figure 2: Stewart Platform Plant from forces applied by the legs to the acceleration of the platform

stewart_platform_rotations.png

Figure 3: Stewart Platform Plant from torques applied by the legs to the angular acceleration of the platform

stewart_platform_legs.png

Figure 4: Stewart Platform Plant from forces applied by the legs to displacement of the legs

stewart_platform_transmissibility.png

Figure 5: Transmissibility

2.5 Real Approximation of \(G\) at the decoupling frequency

Let’s compute a real approximation of the complex matrix \(H_1\) which corresponds to the the transfer function \(G_c(j\omega_c)\) from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency \(\omega_c\).

wc = 2*pi*20; % Decoupling frequency [rad/s]

Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ...
       {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation

H1 = evalfr(Gc, j*wc);

The real approximation is computed as follows:

D = pinv(real(H1'*H1));
H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));

2.6 Verification of the decoupling using the “Gershgorin Radii”

First, the Singular Value Decomposition of \(H_1\) is performed: \[ H_1 = U \Sigma V^H \]

[U,S,V] = svd(H1);

Then, the “Gershgorin Radii” is computed for the plant \(G_c(s)\) and the “SVD Decoupled Plant” \(G_d(s)\): \[ G_d(s) = U^T G_c(s) V \]

This is computed over the following frequencies.

freqs = logspace(-2, 2, 1000); % [Hz]

Gershgorin Radii for the coupled plant:

Gr_coupled = zeros(length(freqs), size(Gc,2));

H = abs(squeeze(freqresp(Gc, freqs, 'Hz')));
for out_i = 1:size(Gc,2)
    Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end

Gershgorin Radii for the decoupled plant using SVD:

Gd = U'*Gc*V;
Gr_decoupled = zeros(length(freqs), size(Gd,2));

H = abs(squeeze(freqresp(Gd, freqs, 'Hz')));
for out_i = 1:size(Gd,2)
    Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end

Gershgorin Radii for the decoupled plant using the Jacobian:

Gj = Gc*inv(J');
Gr_jacobian = zeros(length(freqs), size(Gj,2));

H = abs(squeeze(freqresp(Gj, freqs, 'Hz')));

for out_i = 1:size(Gj,2)
    Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end

simscape_model_gershgorin_radii.png

Figure 6: Gershgorin Radii of the Coupled and Decoupled plants

2.7 Decoupled Plant

Let’s see the bode plot of the decoupled plant \(G_d(s)\). \[ G_d(s) = U^T G_c(s) V \]

simscape_model_decoupled_plant_svd.png

Figure 7: Decoupled Plant using SVD

simscape_model_decoupled_plant_jacobian.png

Figure 8: Decoupled Plant using the Jacobian

2.8 Diagonal Controller

The controller \(K\) is a diagonal controller consisting a low pass filters with a crossover frequency \(\omega_c\) and a DC gain \(C_g\).

wc = 2*pi*0.1; % Crossover Frequency [rad/s]
C_g = 50; % DC Gain

K = eye(6)*C_g/(s+wc);

2.9 Centralized Control

The control diagram for the centralized control is shown below.

The controller \(K_c\) is “working” in an cartesian frame. The Jacobian is used to convert forces in the cartesian frame to forces applied by the actuators.

centralized_control.png

G_cen = feedback(G, inv(J')*K, [7:12], [1:6]);

2.10 SVD Control

The SVD control architecture is shown below. The matrices \(U\) and \(V\) are used to decoupled the plant \(G\).

svd_control.png

SVD Control

G_svd = feedback(G, pinv(V')*K*pinv(U), [7:12], [1:6]);

2.11 Results

Let’s first verify the stability of the closed-loop systems:

isstable(G_cen)
ans =
  logical
   1
isstable(G_svd)
ans =
  logical
   1

The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure 11.

stewart_platform_simscape_cl_transmissibility.png

Figure 11: Obtained Transmissibility

3 Stewart Platform - Analytical Model

3.1 Characteristics

L  = 0.055;
Zc = 0;
m  = 0.2;
k  = 1e3;
c  = 2*0.1*sqrt(k*m);

Rx = 0.04;
Rz = 0.04;
Ix = m*Rx^2;
Iy = m*Rx^2;
Iz = m*Rz^2;

3.2 Mass Matrix

M = m*[1 0 0 0 Zc 0;
       0 1 0 -Zc 0 0;
       0 0 1 0 0 0;
       0 -Zc 0 Rx^2+Zc^2 0 0;
       Zc 0 0 0 Rx^2+Zc^2 0;
       0 0 0 0 0 Rz^2];

3.3 Jacobian Matrix

Bj=1/sqrt(6)*[ 1 1 -2 1 1 -2;
               sqrt(3) -sqrt(3) 0 sqrt(3) -sqrt(3) 0;
               sqrt(2) sqrt(2) sqrt(2) sqrt(2) sqrt(2) sqrt(2);
               0 0 L L -L -L;
               -L*2/sqrt(3) -L*2/sqrt(3) L/sqrt(3) L/sqrt(3) L/sqrt(3) L/sqrt(3);
               L*sqrt(2) -L*sqrt(2) L*sqrt(2) -L*sqrt(2) L*sqrt(2) -L*sqrt(2)];

3.4 Stifnness matrix and Damping matrix

kv = k/3; % [N/m]
kh = 0.5*k/3; % [N/m]

K = diag([3*kh,3*kh,3*kv,3*kv*Rx^2/2,3*kv*Rx^2/2,3*kh*Rx^2]); % Stiffness Matrix

C = c*K/100000; % Damping Matrix

3.5 State Space System

A  = [zeros(6) eye(6); -M\K -M\C];
Bw = [zeros(6); -eye(6)];
Bu = [zeros(6); M\Bj];
Co = [-M\K -M\C];
D  = [zeros(6) M\Bj];

ST = ss(A,[Bw Bu],Co,D);
  • OUT 1-6: 6 dof
  • IN 1-6 : ground displacement in the directions of the legs
  • IN 7-12: forces in the actuators.
ST.StateName = {'x';'y';'z';'theta_x';'theta_y';'theta_z';...
                'dx';'dy';'dz';'dtheta_x';'dtheta_y';'dtheta_z'};
ST.InputName = {'w1';'w2';'w3';'w4';'w5';'w6';...
                'u1';'u2';'u3';'u4';'u5';'u6'};
ST.OutputName = {'ax';'ay';'az';'atheta_x';'atheta_y';'atheta_z'};

3.6 Transmissibility

TR=ST*[eye(6); zeros(6)];
figure
subplot(231)
bodemag(TR(1,1),opts);
subplot(232)
bodemag(TR(2,2),opts);
subplot(233)
bodemag(TR(3,3),opts);
subplot(234)
bodemag(TR(4,4),opts);
subplot(235)
bodemag(TR(5,5),opts);
subplot(236)
bodemag(TR(6,6),opts);

stewart_platform_analytical_transmissibility.png

Figure 12: Transmissibility

3.7 Real approximation of \(G(j\omega)\) at decoupling frequency

sys1 = ST*[zeros(6); eye(6)]; % take only the forces inputs

dec_fr = 20;
H1 = evalfr(sys1,j*2*pi*dec_fr);
H2 = H1;
D = pinv(real(H2'*H2));
H1 = inv(D*real(H2'*diag(exp(j*angle(diag(H2*D*H2.'))/2)))) ;
[U,S,V] = svd(H1);

wf = logspace(-1,2,1000);
for i  = 1:length(wf)
    H = abs(evalfr(sys1,j*2*pi*wf(i)));
    H_dec = abs(evalfr(U'*sys1*V,j*2*pi*wf(i)));
    for j = 1:size(H,2)
        g_r1(i,j) =  (sum(H(j,:))-H(j,j))/H(j,j);
        g_r2(i,j) =  (sum(H_dec(j,:))-H_dec(j,j))/H_dec(j,j);
        %     keyboard
    end
    g_lim(i) = 0.5;
end

3.8 Coupled and Decoupled Plant “Gershgorin Radii”

figure;
title('Coupled plant')
loglog(wf,g_r1(:,1),wf,g_r1(:,2),wf,g_r1(:,3),wf,g_r1(:,4),wf,g_r1(:,5),wf,g_r1(:,6),wf,g_lim,'--');
legend('$a_x$','$a_y$','$a_z$','$\theta_x$','$\theta_y$','$\theta_z$','Limit');
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')

gershorin_raddii_coupled_analytical.png

Figure 13: Gershorin Raddi for the coupled plant

figure;
title('Decoupled plant (10 Hz)')
loglog(wf,g_r2(:,1),wf,g_r2(:,2),wf,g_r2(:,3),wf,g_r2(:,4),wf,g_r2(:,5),wf,g_r2(:,6),wf,g_lim,'--');
legend('$S_1$','$S_2$','$S_3$','$S_4$','$S_5$','$S_6$','Limit');
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')

gershorin_raddii_decoupled_analytical.png

Figure 14: Gershorin Raddi for the decoupled plant

3.9 Decoupled Plant

figure;
bodemag(U'*sys1*V,opts)

stewart_platform_analytical_decoupled_plant.png

Figure 15: Decoupled Plant

3.10 Controller

fc = 2*pi*0.1; % Crossover Frequency [rad/s]
c_gain = 50; %

cont = eye(6)*c_gain/(s+fc);

3.11 Closed Loop System

FEEDIN  = [7:12]; % Input of controller
FEEDOUT = [1:6]; % Output of controller

Centralized Control

STcen = feedback(ST, inv(Bj)*cont, FEEDIN, FEEDOUT);
TRcen = STcen*[eye(6); zeros(6)];

SVD Control

STsvd = feedback(ST, pinv(V')*cont*pinv(U), FEEDIN, FEEDOUT);
TRsvd = STsvd*[eye(6); zeros(6)];

3.12 Results

figure
subplot(231)
bodemag(TR(1,1),TRcen(1,1),TRsvd(1,1),opts)
legend('OL','Centralized','SVD')
subplot(232)
bodemag(TR(2,2),TRcen(2,2),TRsvd(2,2),opts)
legend('OL','Centralized','SVD')
subplot(233)
bodemag(TR(3,3),TRcen(3,3),TRsvd(3,3),opts)
legend('OL','Centralized','SVD')
subplot(234)
bodemag(TR(4,4),TRcen(4,4),TRsvd(4,4),opts)
legend('OL','Centralized','SVD')
subplot(235)
bodemag(TR(5,5),TRcen(5,5),TRsvd(5,5),opts)
legend('OL','Centralized','SVD')
subplot(236)
bodemag(TR(6,6),TRcen(6,6),TRsvd(6,6),opts)
legend('OL','Centralized','SVD')

stewart_platform_analytical_svd_cen_comp.png

Figure 16: Comparison of the obtained transmissibility for the centralized control and the SVD control

Author: Dehaeze Thomas

Created: 2020-09-21 lun. 18:57