diff --git a/index.html b/index.html index d3617f3..a2752b9 100644 --- a/index.html +++ b/index.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +open('gravimeter.slx') @@ -122,7 +122,7 @@ State-space model with 4 outputs, 3 inputs, and 6 states. -+-
Figure 1: Open Loop Transfer Function from 3 Actuators to 4 Accelerometers
@@ -131,12 +131,12 @@ State-space model with 4 outputs, 3 inputs, and 6 states.-2 Stewart Platform - Simscape Model
++2 Stewart Platform - Simscape Model
--2.1 Jacobian
++-2.1 Jacobian
First, the position of the “joints” (points of force application) are estimated and the Jacobian computed. @@ -178,8 +178,8 @@ save('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
-2.2 Simscape Model
++2.2 Simscape Model
-open('stewart_platform/drone_platform.slx'); @@ -210,8 +210,8 @@ We load the Jacobian.-2.3 Identification of the plant
++-2.3 Identification of the plant
The dynamics is identified from forces applied by each legs to the measured acceleration of the top platform. @@ -268,32 +268,32 @@ Gl.OutputName = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};
-2.4 Obtained Dynamics
++2.4 Obtained Dynamics
-+-
Figure 2: Stewart Platform Plant from forces applied by the legs to the acceleration of the platform
+-
Figure 3: Stewart Platform Plant from torques applied by the legs to the angular acceleration of the platform
+-
Figure 4: Stewart Platform Plant from forces applied by the legs to displacement of the legs
+-
Figure 5: Transmissibility
@@ -301,8 +301,8 @@ Gl.OutputName = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};-2.5 Real Approximation of \(G\) at the decoupling frequency
++-2.5 Real Approximation of \(G\) at the decoupling frequency
Let’s compute a real approximation of the complex matrix \(H_1\) which corresponds to the the transfer function \(G_c(j\omega_c)\) from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency \(\omega_c\). @@ -328,8 +328,8 @@ H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
-2.6 Verification of the decoupling using the “Gershgorin Radii”
++2.6 Verification of the decoupling using the “Gershgorin Radii”
-First, the Singular Value Decomposition of \(H_1\) is performed: @@ -397,7 +397,7 @@ end
+-
Figure 6: Gershgorin Radii of the Coupled and Decoupled plants
@@ -405,8 +405,8 @@ end-2.7 Decoupled Plant
++2.7 Decoupled Plant
Let’s see the bode plot of the decoupled plant \(G_d(s)\). @@ -414,14 +414,14 @@ Let’s see the bode plot of the decoupled plant \(G_d(s)\).
-+-
Figure 7: Decoupled Plant using SVD
+-
Figure 8: Decoupled Plant using the Jacobian
@@ -429,8 +429,8 @@ Let’s see the bode plot of the decoupled plant \(G_d(s)\).-2.8 Diagonal Controller
++-2.8 Diagonal Controller
The controller \(K\) is a diagonal controller consisting a low pass filters with a crossover frequency \(\omega_c\) and a DC gain \(C_g\). @@ -446,8 +446,8 @@ K = eye(6)*C_g/(s+wc);
-2.9 Centralized Control
++-2.9 Centralized Control
The control diagram for the centralized control is shown below. @@ -471,8 +471,8 @@ The Jacobian is used to convert forces in the cartesian frame to forces applied
-2.10 SVD Control
++-2.10 SVD Control
The SVD control architecture is shown below. @@ -495,8 +495,8 @@ SVD Control
-2.11 Results
++2.11 Results
Let’s first verify the stability of the closed-loop systems: @@ -526,11 +526,11 @@ ans =
-The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure 11. +The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure 11.
-+-
Figure 11: Obtained Transmissibility
@@ -539,12 +539,12 @@ The obtained transmissibility in Open-loop, for the centralized control as well-3 Stewart Platform - Analytical Model
++3 Stewart Platform - Analytical Model
--3.1 Characteristics
++3.1 Characteristics
-L = 0.055; @@ -563,8 +563,8 @@ Iz = m*Rz^2;-3.2 Mass Matrix
++3.2 Mass Matrix
-M = m*[1 0 0 0 Zc 0; @@ -578,8 +578,8 @@ Iz = m*Rz^2;-3.3 Jacobian Matrix
++3.3 Jacobian Matrix
-Bj=1/sqrt(6)*[ 1 1 -2 1 1 -2; @@ -593,8 +593,8 @@ Iz = m*Rz^2;-3.4 Stifnness matrix and Damping matrix
++3.4 Stifnness matrix and Damping matrix
-kv = k/3; % [N/m] @@ -608,8 +608,8 @@ C = c*K/100000; % Damping Matrix-3.5 State Space System
++3.5 State Space System
-A = [zeros(6) eye(6); -M\K -M\C]; @@ -638,8 +638,8 @@ ST.OutputName = {'ax';'ay';'az';'atheta_x';'atheta_y';'atheta_z'};-3.6 Transmissibility
++3.6 Transmissibility
-TR=ST*[eye(6); zeros(6)]; @@ -664,7 +664,7 @@ bodemag(TR(6,6),opts);+-
Figure 12: Transmissibility
@@ -672,8 +672,8 @@ bodemag(TR(6,6),opts);-3.7 Real approximation of \(G(j\omega)\) at decoupling frequency
++3.7 Real approximation of \(G(j\omega)\) at decoupling frequency
-sys1 = ST*[zeros(6); eye(6)]; % take only the forces inputs @@ -701,8 +701,8 @@ end-3.8 Coupled and Decoupled Plant “Gershgorin Radii”
++3.8 Coupled and Decoupled Plant “Gershgorin Radii”
-figure; @@ -714,7 +714,7 @@ xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')+-
Figure 13: Gershorin Raddi for the coupled plant
@@ -730,7 +730,7 @@ xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')+-
Figure 14: Gershorin Raddi for the decoupled plant
@@ -738,8 +738,8 @@ xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')-3.9 Decoupled Plant
++3.9 Decoupled Plant
-figure; @@ -748,7 +748,7 @@ bodemag(U'*sys1*V,opts)+-
Figure 15: Decoupled Plant
@@ -756,8 +756,8 @@ bodemag(U'*sys1*V,opts)-3.10 Controller
++3.10 Controller
-fc = 2*pi*0.1; % Crossover Frequency [rad/s] @@ -769,8 +769,8 @@ cont = eye(6)*c_gain/(s+fc);-3.11 Closed Loop System
++3.11 Closed Loop System
-FEEDIN = [7:12]; % Input of controller @@ -798,8 +798,8 @@ TRsvd = STsvd*[eye(6); zeros(6)];-3.12 Results
++3.12 Results
-figure @@ -825,7 +825,7 @@ legend('OL','Centralized','SVD')+
Figure 16: Comparison of the obtained transmissibility for the centralized control and the SVD control
@@ -836,7 +836,7 @@ legend('OL','Centralized','SVD')diff --git a/index.org b/index.org index dfae236..8bfd58a 100644 --- a/index.org +++ b/index.org @@ -573,12 +573,12 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le ax1 = subplot(2, 1, 1); hold on; - for i = 1:6 - plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', i), sprintf('F%i', i)), freqs, 'Hz')))); + for ch_i = 1:6 + plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', ch_i), sprintf('F%i', ch_i)), freqs, 'Hz')))); end - for i = 1:5 - for j = i+1:6 - plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', i), sprintf('F%i', j)), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); + for out_i = 1:5 + for in_i = i+1:6 + plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', out_i), sprintf('F%i', in_i)), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end hold off; @@ -587,8 +587,8 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le ax2 = subplot(2, 1, 2); hold on; - for i = 1:6 - plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(sprintf('A%i', i), sprintf('F%i', i)), freqs, 'Hz')))); + for ch_i = 1:6 + plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(sprintf('A%i', ch_i), sprintf('F%i', ch_i)), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); @@ -717,13 +717,13 @@ Gershgorin Radii for the decoupled plant using the Jacobian: plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled'); plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD'); plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian'); - for i = 2:6 + for in_i = 2:6 set(gca,'ColorOrderIndex',1) - plot(freqs, Gr_coupled(:,i), 'HandleVisibility', 'off'); + plot(freqs, Gr_coupled(:,in_i), 'HandleVisibility', 'off'); set(gca,'ColorOrderIndex',2) - plot(freqs, Gr_decoupled(:,i), 'HandleVisibility', 'off'); + plot(freqs, Gr_decoupled(:,in_i), 'HandleVisibility', 'off'); set(gca,'ColorOrderIndex',3) - plot(freqs, Gr_jacobian(:,i), 'HandleVisibility', 'off'); + plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off'); end plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit') set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -Created: 2020-09-21 lun. 18:53
+Created: 2020-09-21 lun. 18:57