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Consider the following MIMO system whose inputs and outputs are in the decentralized
frame

A =
(

0 I
−K/M −C/M

)
, B =

(
0

B/M

)
, C =

(
J 0

)
, D = 0

Where J is the Jacobian, B is the transposed of the Jacobian, K is the stiffness matrix, C is the
damping matrix, M is the mass matrix and I is an identity matrix.

In the rest of the document, the decentralized system will be defined by G and the controller
by H.

This document will explain how to project the decentralized system into centralized, singular
values and eigenvalues coordinates and will discuss the pros and cons of these different frames.
An example will be used to illustrate the different aspects of MIMO systems discussed during
the meetings.

1 Projection of the system in different spaces

1.1 Cartesian decomposition (central coordinates)

𝐽−1𝐵−1

G

Therefore, if you want to project G in the centralized coordinates, you have to apply

Gcentralized = J−1GB−1 (1)

Note that being in the centralized coordinates does not mean that you will have a decoupled
system. In fact, you are expressing the system in the generalized coordinates (x,y,z,θx,θy,θz)
whose axis origins correspond to the centre of mass of the system. Consequently, if you have
some coupling between two directions, the non-diagonal term corresponding to this coupling will
not be null.

If you want to apply a centralized controller to G (not Gcentralized), the controller will be

Hcen = B−1HJ−1 (2)

i.e. we project the outputs in the centralized coordinates, we apply the controller and we project
the result in the legs coordinates.
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1.2 Singular value decomposition (SVD)

“Some advantage of the SVD over the eigenvalue decomposition for analysing gains and direc-
tionality of multivariable plants are:

1. The singular values give better information about the gains of the plants

2. The SVD directions obtained from the SVD are orthogonal

3. The SVD also applies directly to non-square plants.”p.77 [1]

A good mathematical definition of the singular values can be found in the appendix A.3 of the
same book.

To prove the 1st assumption above, the gain of a MIMO system can be defined as (p.73)

‖G‖ = sup
‖d‖6=0

‖Gd‖
‖d‖

= sup
‖d‖6=0

√
dHGHGd

dHd

= sup
‖d‖6=0

√
dH(UΣV H)H(UΣV H)d

dHd

= sup
‖d‖6=0

√
dHV HΣHUHUΣV Hd

dHd

= sup
‖d‖6=0

√
dHV H‖Σ‖2V Hd

dHd

= sup
‖d‖6=0

√
‖Σ‖2dHV HV Hd

dHd

= ‖Σ‖ sup
‖d‖6=0

√
dHd

dHd
= ‖Σ‖

Therefore, the gain of a MIMO system corresponds to the singular values and consequently,
singular values provide better information about the gain of the plant as stated in the book.

𝑈−1(𝑓0)(𝑉𝐻(𝑓0))
−1

G f = U(f)Σ(f)𝑉𝐻(𝑓)

The SVD can be made in different ways (p.92):

1. Dynamic decoupling

The decoupling is done for each frequency.

2 Steady-state decoupling

The decoupling is calculated a 0 Hz and the resulting U and V matrix are used to project G in
the directions of the singular values at 0 Hz.

3 Approximate decoupling at frequency f0
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We chose a frequency at which we evaluate the U and V matrix and we use it to project G in
the direction of the singular values obtained.

G(f0) = U(f0)Σ(f0)V H(f0)

Σ(f0) = U−1G(f0)V −H(f0)

The decoupled system is thus

Gdecoupled = U−1(f0)GV −H(f0)

And if you want to apply a decoupled controller to G (not Gdecoupled), the controller will be

Hdec = V −H(f0)HU−1(f0) (3)

Remark 1 if you evaluate the U and V matrix at a frequency where the system is already
decoupled, the U and V matrix will be identity matrix and will not allow you to decouple your
system. In most mechanical systems, this is the case at 0 Hz so it is not a good idea to opt for
the steady-state decoupling.

Remark 2 from the model, it seems that it is safer to choose a frequency f0 which is lower
than the resonance frequencies of the system. Otherwise, the phase of the decoupled system
might be shifted by 180◦ and the gain to use will have to be negative. This is not a major issue
but when designing the controller, this has to be carefully taken into account. The phase shift
arises from the fact that the singular value is a real positive value, i.e. the phase is 0. When
you calculate the SVD at a frequency higher than a resonance, the phase of the signal below the
resonance frequency will be shifted by 180◦. Let’s illustrate this, with the initial system show
below. It’s phase is 0 before the resonance frequency and -180◦ after. If the SVD matrix are
evaluated above the resonance frequency, the phase of the resulting system after SVD will be 0
above the resonance frequency. Consequently, it will be 180◦ before the resonance frequency.
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1.3 Eigenvalue decomposition

/!\This does not corresponds to the mode shapes of a mechanical system
To obtain the mode shapes, we should first project the system in the centralized coordinates

and then calculate K/M because Mẍ = −Kx→ s2X = −K
MX → ω2 = K/M

The mode shapes correspond to the resonance frequencies of the system while the eigenvalues
are defined by

GV = V Λ (4)
GV V H = V ΛV H (5)

G = V ΛV H (6)

Note that eigenvalues can only be computed for square systems (p.75).

𝑉−1(𝑉𝐻)−1

G = VΛV𝐻

The eigenvalue decomposition can also be performed in three different ways, similarly to
what is explained in the SVD section. The decoupled system is

Geigenvalue = V −1(f0)GV −H(f0) (7)

And if you want to apply a decoupled controller to G (not Geigenvalue), the controller will be

Heig = V −H(f0)HV −1(f0) (8)

2 Application of the decomposition to a 3 d.o.f. model

l

L x
𝜃

y

d

The 3 dof model used to illustrate the different
concepts discussed during the MIMO meetings
is made of a rigid body which is supported by
two pairs of vertical actuator and spring and one
pair of horizontal actuator and spring. A sensor
is collocated with each actuator.
The following sections will show if the decou-
pling using SVD will allow to improve the per-
formance of inertial control in comparison to a
decentralized approach.
Results of 4 group meetings: 26/10, 21/11,
28/11, 12/12
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2.1 Singular values and eigenvalues decomposition

The two graphs below have been obtained thanks to a dynamic SVD and eigenvalue decoupling
of the system in the decentralized coordinates. We can see that the frequencies of the peaks
correspond exactly to the resonance frequencies of the system in the three d.o.f.:

1st mode 2nd mode 3rd mode
Frequency 1.03 Hz 2.25 Hz 2.68 Hz

Table 1: Frequency corresponding the the different modes of the system.

Consequently, in both cases, the new system looks like three SISO models (except that σ1
is always the largest singular value because the function sorts them). The last figure of this
section shows the superposition of the singular values and eigenvalues. In this system which is
a square system, the singular values and eigenvalues are identical.

In the rest of this report, we are only going to consider singular values.
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2.2 Decoupled system

The projection of the decentralized system in the SVD frame using the approximate SVD at
0.5 Hz is shown here. The system is decoupled as the maximum amplitude of the non-diagonal
elements is on the order of 10−18. Note that depending on the MATLAB function used, some
strange behaviour appears. After some tests, we concluded that we should always prefer to use
the ss and zpk functions and leave the tf function. Now let’s see if this decoupling will help to
improve the performance of the inertial control.
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2.3 Control performance using a SISO approach

To design a robust controller for inertial control, the following steps should be carefully assessed:

1. Multiply the plant by the gain and show the open loop.

2. Verify the stability margins on the plot. If needed design the appropriate lead and lag to
improve the margins. These can be different for each degree of freedom of the system.

3. Verify the poles and zeros locations of the closed loop: in order to verify the robustness of
the control law over a range of gains, this pole-zero evaluation has to be performed with
different values of the gain. The controller designed will have to be adapted depending on
the gain as the unitary gain changes. This gain variation is necessary as in practice, the
gain applied will never be exactly the same or it might fluctuate with time.

The goal of this section is to compare the performance of an inertial control based on a de-
centralized action to the one based on a SVD decoupling action. The SVD decoupling control
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was applied based on the definition made in the first section. In order to represent a realistic
case, the gain of the inertial control has been chosen to reduce of a factor 100 the motion of the
system in all direction. The corresponding gain is 105. The resulting open loop allow to verify
if a lead and/or a lag is needed. In principle, the controller can be different for each diagonal
element. Here, as the unitary gain of all diagonal element is around 20 Hz, the same lead has
been applied

Lead = s+ 2π10
s+ 2π40 (9)

The same lead was used for both types of control as the unitary gain was crossed at the same
frequency. The pole-zero map of the closed loop system for both cases is shown below. There is
no positive real part pole or zero. Therefore, the robustness of the controller is guaranteed.
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The performance of both controller is shown below. We can see that there is no clear
difference between the two types of control laws in this application. It appears that in this case,
the controllers are identical as the U and V matrix are unitary, we have

HSV D = gV −H(f0)HU−1(f0) (10)

= gV −H(f0)

Lead 0 0
0 Lead 0
0 0 Lead

U−1(f0) (11)

= gLeadV −H(f0)U−1(f0) (12)
= gLead = Hdecentralized (13)

The controllers will be different if the lead and/or the gain of the controller depend on
the direction. For example, when the motion in one direction has to be more isolated, the
decentralized control will not have the same performance as the above demonstration will not
be applicable.
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2.4 Singular value as a performance indicator

The bandwidth of the system corresponds to the frequency at which σ(GH) crosses 1. In fact,
before the bandwidth frequency, GH is bigger than 1 and we isolate the system while above that
frequency, GH is smaller than 1 and we don’t isolate anymore.

The singular values allow to have a first glimpse of the system performance. In fact, it has
been stated (p.81) that

σ(GH)− 1 ≤ 1
σ(S) ≤ σ(GH) + 1 (14)

Where S is the sensitivity function defined as (1+GH)−1.
By evaluating the singular valuers of the open loop for all frequencies, we can predict the

performance and the bandwidth of the closed loop system.
On the graph below, we can see that this assumption is verified in this example. Up to

the resonance frequency, the inverse of the sensitivity is 100 which means that the system is
isolated of a factor 100 in this frequency range. At the resonance frequency, the isolation is even
bigger. Above the resonance frequency, the curves drops down. Therefore, the performance of
the system will decrease. Finally around 10 Hz, the inverse of the sensitivity crosses 1 and by
comparison with the performance curve above, we can see that the bandwidth is around 30 Hz.
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Do we also have some information from the largest singular values of the open loop, i.e. is
the following assumption also valid?

σ(GH)− 1 ≤ 1
σ(S) ≤ σ(GH) + 1 (15)

If valid, can this assumption be used as a performance indicator?
The corresponding assumption is plotted on the graph below. The frequency of the three

peaks corresponds to the three resonance frequencies of the system, see table 1. In addition, in
this case, the amplitude below the resonance frequency is identical to the other case.

2.5 Meaning of the zeros of a MIMO system

In a MIMO system, a zero corresponds to a zero in transmission [2]. It means that when some
signal is injected, nothing is measured by the system. In other words, you are accumulating
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energy in the system.
Methods to evaluate the transmission zeros of square and non-square systems are given

in [2]. In addition, a MIMO system can be seen as a matrix of SISO transfer functions. In [2],
it also shows that the zeros of these transfer functions does not systematically corresponds to
the transmission zeros of the MIMO system.

3 Application to a 3 d.o.f. system with not the same number of
input and outputs
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To further investigate the role of SVD decom-
position for the control performance of MIMO
systems, the 3 dof system has been modified.
The springs and actuators are located as be-
fore. One sensor is collocated with the horizon-
tal spring/actuator pair. It measures the motion
in the horizontal (x) and vertical (z) direction.
A second sensor is placed on top of the rectangle,
also measuring the motion in the horizontal and
vertical direction. This second sensor is aligned
with the centor of mass of the structure.
The system has three inputs and four outputs.
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3.1 Singular value decomposition

Condition number [3]

3.2 Controller design and robustness study when using a MIMO approach

1. Do the SVD decomposition at the crossover frequency

2. Design a controller for each singular value

3. Check the performance of the resulting controller by evaluating the lowest singular value
σ of the open loop.

4 Useful Matlab functions
ss: calculate the state-space model based on the A, B, C and D matrix specified by the user
zpk: returns a transfer function when the user specifies the location of the poles and zeros and
the gain of the transfer function. This is the function to use to design a controller
tf : returns a transfer function when the user specifies the numerator and denominator polynoms.
You better should use zpk of ss than tf to avoid numerical errors
minreal: evaluate the minimal realization of a system by pole-zero cancellation
feedback: calculate the closed-loop of the system, given the system, the controller and the
input and output used to close the loop
evalfr and freqresp: evaluate a system at the frequency specified by the user
svd: calculate the Σ, U and V matrix of the system evaluated at a frequency (need to use evalfr
or freqresp before)
eig: returns the eigenvalue and eigenvector of the system evaluated at a frequency (need to use
evalfr or freqresp before)
sigma: evaluate the singular values and plot them in a figure
pzmap: returns the poles and zeros of a mimo system
pinv: allow to calculate the inverse of a matrix
B\ A : allow to calculate the division of the matrix A by the matrix A (for matrix, never do
A/B)
robuststab: Calculate robust stability margins of uncertain multivariable system
ctrlpref : allow you to specify which are the default units for bode, Nyquist etc. It also allows
to specify the label fontsize.
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