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Performance indicator
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Performance indicator

1
Can we then alsosay that (G H) — 1 < 9) <T(GH)+1?>VYES
E A
15t property
Chapter 29 1 1
Some Properties of Singular Values a(S) = 5((1 + GH)_l) = Q(I + GH)

We list here some important properties of singular values.

We leave the proofs to the reader. Some of the properties require 1< <
that the matrix be square and nonsingular. eg(GH) 1< g(l + GH) — Q(GH) +1

I Omar (M) = maxy,=1 | Mx]ly = |Mll2 = -—l; 1

2. Omin(M) = minggp=1 IMxll2 = mri = o(GH) —1< a(S) <o(GH) +1
CamiTEE

5. 0i(M) —1 < oI + M) < o (M) +1, = 2" property
1,---,k 1 1 _

4. o;(aM) = |ajo; (M) foralle e C,i = 1,---, k. a(S) = a((I + GH) 1) =o(l + GH)

5. Omax(M) + M2} < Omax (M) + Omax(M2). — —

. Omax (MiM2) < Oma (M) - Omax . — — —

& Omax (M) = Omax (M1) - Omax (M2) > 5 (GH)—1<5( +GH) <5(GH) + 1

Levine, W. S. (1996). The control

handbook. CRC press. g (GH) —1< P a(GH) + 1

a($) —



Singular Value [-]

Performance indicator

As for SISO systems we define the bandwidth as the frequency up to
which feedback is effective. For MIMO systems the bandwidth will depend
on directions, and we have a bandwidth region between a lower frequency
where the maximum singular value, 5(5), reaches 0.7 (the low-gain or worst-
case direction), and a higher frequency where the minimum singular value,
o(S), reaches 0.7 (the high-gain or best direction). If we want to associate a
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It seems like here we
show the maximum and
minimum  performance
and to achieve these
performance, we have to
make a change of
coordinates to be in the
direction of these
singular values.



Meaning of the zeros in a MIMO system
Transmission zeros =2 explain my understanding when time

24.4.1 Definition of MIMO Transmission
Zeros

To define the multi-input, multioutput (MIMO) transmission
zeros, we will first assume that we have a systein with the same
number of inputs and outputs. This is referred to as a square
systern. We will later extend the definition to nonsquare sys-
tems. For square systems, we can represent the system in the
time domain as

X(t) = Ax(t)+ Bu(t) (24.36)
y(t) = Cx(t)+ Du(r) (24.37)

where x(r) € R", u(t) € R™, and y(t) € R™. We can also
write the transfer function matrix as

Gis)=C(sI—-A)'B+D (24.38)

where G(s) € C™*™, Given this system, we have the following
definition:

DEFINITION 24.3  The plant has a zero at the (complex) value
zi if vectors &, € C" and u € C™ exist which are not both zero,
so that the solution to the equations

(1) = Ax(n)+ Buge™, x(0)=§ (24.39)
y() = Cx(t)+ Dulr) (24.40)
has the property that

yit) = 0 Vi>u0 (24.41)

This property of transmission zeros is sometimes called trans-
mission blocking. When zeros repeat, this definition still holds
but a more complicated transmission blocking property also
holds [2].

Asanexample, let us show that this definition is consistent with
the standard definition of zeros for single-input, single-output
systems. '

at the same frequency as the pole at s = —3. It is also important
to realize that, although one of the SISO transfer functions has
a zero at s = —2, this is not a transmission zero of the MIMO
system.

Levine, W. S. (1996). The control
handbook. CRC press, chap. 24

Provides also information about pole-zero
cancellation



3 dof model with 3 inputs and 4 outputs

ha

Study SVD decomposition

Compare isolation performance using
SVD and with a decentralized control



SVD decomposition for a [xm matrix

Consider a fixed frequency w where G(jw) is a constant [ x m complex
matrix, and denote G(jw) by G for simplicity. Any matrix G may be
decomposed into its singular value decomposition, and we write

G=Usv (3.31)

where

¥ is an [ x m matrix with & = min{/,m} non-negative singular values) o;,
arranged in descending order along its main diagonal; the other entries
are zero. The singular values are the square roots of the eigenvalues of
GHG, where G is the complex conjugate transpose of (.

0i(G) =/ Ni(GHG) (3.32)

U is an [ X [ unitary matrix of output singular vectors, u;,

V' is an m x m unitary matrix of input singular vectors, v;,



SVD decomposition for a [xm matrix

Maximum and minimum singular value. As already stated, it can be
shown that the largest gain for any input direction is equal to the maximum
singular value

. Gdlls _ [[Goall
max =
a0 |ldllz lvdl2
and that the smallest gain for any input direction is equal to minimum singular

=01 (G) 2 5(G) (3.38)

e IGdl _ G
‘ 7|2 UL (|2 A
min = =0,(G) =o(G 3.39
R T R (339
where & = min{/,m}. Thus, for any vector d we have that
Gd|).
2(G) < % < 3(6) (3.40)
a2

Define w; = 4, v; = v, u; = v and v = v. Then it follows that

Gv = au, Gv=ocu (3.41)

The vector © corresponds to the input direction with largest amplification, and
2 18 the corresponding output direction in which the inputs are most effective.
The direction involving © and @ is sometimes referred to as the “strongest”,
“high-gain” or “most important” direction. The next most important direction
is associated with vy and us, and so on (see Appendix A.3.6) until the “least
important”, “weak” or “low-gain” direction which is associated with v and wu.




SVD decomposition for a [xm matrix

Nonsquare plants

The SVD is also useful for nonsquare plants. For example, consider a plant
with 2 inputs and 3 outputs. In this case the third output singular vector, us,
tells us in which output direction the plant cannot be controlled. Similarly, for
a plant with more inputs than outputs, the additional input singular vectors
tell us in which directions the input will have no effect.

Here, we have 4 outputs and 3 inputs but we areina 3
dof system

- the system is fully controllable and fully
observable

We are going to decompose the system at the crosseover
frequency (around 10 Hz)



Condition number [-]

Performance indicator 1:
Condition number

We define the condition number of a matrix as the ratio between the maximum
and minimum singular values

1(G) = 5(G) /(@) (3.63)

A matrix with a large condition number is said to be ill-conditioned. For a
nonsingular (square) matrix ¢(G) = 1/6(G™1), so v(G) = 6(G)a(G1). Tt
then follows from (A.117) that the condition number is large if both G' and
G~! have large elements.

102
What does « large » condition
ol number mean?
Ex. 3.5: y(G) > 100 and they say
that this problem is ill- conditioned.
107" 10° 10" 102 10

Frequency [HZ]



Condition number [-]

Performance indicator 1:
Condition number

What does « large » condition number mean?

where k(A ) denotes the condition number of A, defined as
K(A) = A IA 7Y (3.60)

Sincek(A) = IA|||A V) = |JAA Y = 1, when k(A) = |, Levine, W. S. (1996). The
i 18 - \ ,

the n_‘la[nxrﬂil is wel.l .cnndltmnfd I:mtlx:q.rhen k({A) = 1, the control handbook. CRC

matrix A is ill-conditioned. The condition number of A also

serves as the multiplier scaling relative errors in A, measured by

the induced norm, to relative errors in x [4].

press, chap. 3

—
o
%]

In the field of numerical analysis, the condition
number of a function with respect to an
argument measures how much the output
value of the function can change for a small
change in the input argument. This is used to
measure how sensitive a function is to changes
or errors in the input, and how much error in
the output results from an error in the input.

—
o

A problem with a low condition number is said
to be well-conditioned, while a problem with a
100 R R high condition number is said to be ill-

Frequency [H:,r_} From Wlklpedla




Singular Value [-]

Performance indicator 2:
singular values of the open loop

Minimum performance

o(GH)—-1<

< o(GH 1
a(S) < g )+

10%¢

Hgpa = V_H(fO)HU_l(fO)

10" b
Where H is a 3x4 negative
identity matrix, i.e. the last
column contains only zeros.
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Performance indicator 2:
singular values of the open loop

Maximum performance

1
g(GH)—-1< 5) <T(GH)+1
Tl
1035 5
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Non-square systems approach

Previous approaches in the literature have solved
this problem (non square system) by (1) squaring the
system by discarding some inputs or by adding new
outputs, or (2) by utilizing some inputs for
input/output (I/O) linearization and the remaining
inputs for minimizing COSt. Kolavennu, Soumitri. "ROBUST NONLINEAR CONTROL OF
NONSQUARE MULTIVARIABLE SYSTEMS." Dynamics and
Control of Process Systems 2001 (DYCOPS-6): A

Proceedings Volume from the 6th IFAC Symposium, Jejudo
Island, Korea, 4-6 June 2001. Vol. 1. Pergamon, 2001.



Design of the controller

Controller = - g*eye(3,4) plant

From: In{1}

System: OL_swd

Ta: Out(1)
—
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=
T
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180

System: OL_swd
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Design of the controller
Controller = - g* inv(V") Lead(3,4) inv(U)
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Design of the controller
Controller = - g* inv(V") Lead(3,4) inv(U)

Motion/actuator

From: In{1) From: In{2) From: In{3)

Ta: Qut(1)
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Design of the controller

The gain is different depending on the singular value

direction 2 we should normalize the three transfer
functions by their static gain

1. Compute SVD at the crossover frequency
|U,S, V] = svd(system(10 Hz))

2. Compute the static gain
Crorm = |U 1system(0 Hz) V|
3. Normalize the controller

_1/Cnorm(1'1) 0 O O_
gainMatrix = 0 1/¢chorm(2,2) 0 0
0 0 1/¢norm(3,3)0]




Design of the controller
Controller = - 100*gainMatrix

Magnitude (abs) ; Phase (deg)

From: In{1)

OL SVD

System: OL_svd __ From: In{2)

From: In{3}
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Design of the controller
Controller = - 100*gainMatrix

OL SvD

From: In{1} From: In{2)

SVD of Complex plant
----------- SVD of real approximation of the complex plant
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Design of the controller

H=-100 0

0

SVD control

Leadl/c,,prm(1,1)
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Performance

Transmissibility from half sum and half difference in the X direction

From: In{1) From: In{2) From: In{3)
T T T T

Control OFF
----------- Decentralized control
Centralized control
= 5VD control
=-=== SVD control real appr.

Half sum
x1 + xz
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To: Cut(1)

Magnitude {(abs)

Half difference
X1 — X2
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To: Dut(2)
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Design of the control
Controller=-g*[1000;01000;0010]

From: Inf1)

System: OL_swd OL SVD

11O In(1) to Cut(1) From: In{2)
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plant = inv(U)G inv(V")
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Design of the controller
0

Controller = - g* inv(VH)
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Magnitude (abs)

To: Outi1)

To: Out{2)

Tar Out(3)

To Outi4)

Design of the controller

Motion/actuator
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Design of the controller
SVD of the real approximation of the plant at 10 Hz

* The controller is exactly the same as the one
designed for the complex plant

* The phase shift of the plant due to the fact that the
SVD is done above the resonance frequency is also
there = minus sign is needed

* Gershgorin radius: how to apply it in case of non
square matrix? = couldn’t find the paper cited by
Mohit ® + couldn’t find any paper applying this to
non-square systems



Magnitude (abs)

To: Out(3)

Tao: Dut(1)

T Dut(2)

Tor Dut(4)

Design of the controller
SVD of the real approximation of the plant at 10 Hz

Motion/actuator Contral OFF
From: In(1) From: In(2) From: In(3) | =eoeeenne Decentralized control
T T T I I Centralized control
SVD control
SVD control real appr.
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