#+TITLE: Stewart Platform - Control Study :DRAWER: #+HTML_LINK_HOME: ./index.html #+HTML_LINK_UP: ./index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results file raw replace #+PROPERTY: header-args:latex+ :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports both #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") :END: * First Control Architecture ** Matlab Init :noexport: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab simulinkproject('./'); #+end_src ** Control Schematic #+begin_src latex :file control_measure_rotating_2dof.pdf \begin{tikzpicture} % Blocs \node[block] (J) at (0, 0) {$J$}; \node[addb={+}{}{}{}{-}, right=1 of J] (subr) {}; \node[block, right=0.8 of subr] (K) {$K_{L}$}; \node[block, right=1 of K] (G) {$G_{L}$}; % Connections and labels \draw[<-] (J.west)node[above left]{$\bm{r}_{n}$} -- ++(-1, 0); \draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{L}$}; \draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{L}$}; \draw[->] (K.east) -- (G.west) node[above left]{$\bm{\tau}$}; \draw[->] (G.east) node[above right]{$\bm{L}$} -| ($(G.east)+(1, -1)$) -| (subr.south); \end{tikzpicture} #+end_src #+RESULTS: [[file:figs/control_measure_rotating_2dof.png]] ** Initialize the Stewart platform #+begin_src matlab stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); #+end_src ** Identification of the plant Let's identify the transfer function from $\bm{\tau}}$ to $\bm{L}$. #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_control'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/tau'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/L'], 1, 'openoutput'); io_i = io_i + 1; %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'L1', 'L2', 'L3', 'L4', 'L5', 'L6'}; #+end_src ** Plant Analysis Diagonal terms #+begin_src matlab :exports none freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G(i, i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src Compare to off-diagonal terms #+begin_src matlab :exports none freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:5 for j = i+1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src ** Controller Design One integrator should be present in the controller. A lead is added around the crossover frequency which is set to be around 500Hz. #+begin_src matlab % wint = 2*pi*100; % Integrate until [rad] % wlead = 2*pi*500; % Location of the lead [rad] % hlead = 2; % Lead strengh % Kl = 1e6 * ... % Gain % (s + wint)/(s) * ... % Integrator until 100Hz % (1 + s/(wlead/hlead)/(1 + s/(wlead*hlead))); % Lead wc = 2*pi*100; Kl = 1/abs(freqresp(G(1,1), wc)) * wc/s * 1/(1 + s/(3*wc)); Kl = Kl * eye(6); #+end_src #+begin_src matlab :exports none freqs = logspace(1, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(freqs, abs(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab :exports none freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(Kl(i,i)*G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:5 for j = i+1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(i, i)*G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(1,1)*G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src