<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2021-01-08 ven. 15:29 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <title>Identification of the Stewart Platform using Simscape</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/> <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script> <script> MathJax = { svg: { scale: 1, fontCache: "global" }, tex: { tags: "ams", multlineWidth: "%MULTLINEWIDTH", tagSide: "right", macros: {bm: ["\\boldsymbol{#1}",1],}, tagIndent: ".8em" } }; </script> <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="./index.html"> UP </a> | <a accesskey="H" href="./index.html"> HOME </a> </div><div id="content"> <h1 class="title">Identification of the Stewart Platform using Simscape</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#orge8b6206">1. Modal Analysis of the Stewart Platform</a> <ul> <li><a href="#org40f9c57">1.1. Initialize the Stewart Platform</a></li> <li><a href="#orgd9529ee">1.2. Identification</a></li> <li><a href="#orgbdba4a6">1.3. Coordinate transformation</a></li> <li><a href="#org11e3698">1.4. Analysis</a></li> <li><a href="#org1db5fc4">1.5. Visualizing the modes</a></li> </ul> </li> <li><a href="#orgfeed9a3">2. Transmissibility Analysis</a> <ul> <li><a href="#org7c6996a">2.1. Initialize the Stewart platform</a></li> <li><a href="#org279dcc8">2.2. Transmissibility</a></li> </ul> </li> <li><a href="#org3ad92e9">3. Compliance Analysis</a> <ul> <li><a href="#org5ba3096">3.1. Initialize the Stewart platform</a></li> <li><a href="#org26cb46a">3.2. Compliance</a></li> </ul> </li> <li><a href="#org51e266f">4. Functions</a> <ul> <li><a href="#org25ca725">4.1. Compute the Transmissibility</a> <ul> <li><a href="#orgeae7abf">Function description</a></li> <li><a href="#orge4c0895">Optional Parameters</a></li> <li><a href="#org17a8811">Identification of the Transmissibility Matrix</a></li> <li><a href="#orgfd96322">Computation of the Frobenius norm</a></li> </ul> </li> <li><a href="#orgb6e05b3">4.2. Compute the Compliance</a> <ul> <li><a href="#orgafb57d0">Function description</a></li> <li><a href="#orga00af61">Optional Parameters</a></li> <li><a href="#org2c35042">Identification of the Compliance Matrix</a></li> <li><a href="#orgbc9a383">Computation of the Frobenius norm</a></li> </ul> </li> </ul> </li> </ul> </div> </div> <p> In this document, we discuss the various methods to identify the behavior of the Stewart platform. </p> <ul class="org-ul"> <li><a href="#orgd142bb4">1</a></li> <li><a href="#org5213401">2</a></li> <li><a href="#org39baa25">3</a></li> </ul> <div id="outline-container-orge8b6206" class="outline-2"> <h2 id="orge8b6206"><span class="section-number-2">1</span> Modal Analysis of the Stewart Platform</h2> <div class="outline-text-2" id="text-1"> <p> <a id="orgd142bb4"></a> </p> </div> <div id="outline-container-org40f9c57" class="outline-3"> <h3 id="org40f9c57"><span class="section-number-3">1.1</span> Initialize the Stewart Platform</h3> <div class="outline-text-3" id="text-1-1"> <div class="org-src-container"> <pre class="src src-matlab"> stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); </pre> </div> </div> </div> <div id="outline-container-orgd9529ee" class="outline-3"> <h3 id="orgd9529ee"><span class="section-number-3">1.2</span> Identification</h3> <div class="outline-text-3" id="text-1-2"> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_model'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span> io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span> io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 2, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Velocity of {B} w.r.t. {A}</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io); <span class="org-comment">% G.InputName = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'};</span> <span class="org-comment">% G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'};</span> </pre> </div> <p> Let’s check the size of <code>G</code>: </p> <div class="org-src-container"> <pre class="src src-matlab"> size(G) </pre> </div> <pre class="example"> size(G) State-space model with 12 outputs, 6 inputs, and 18 states. 'org_babel_eoe' ans = 'org_babel_eoe' </pre> <p> We expect to have only 12 states (corresponding to the 6dof of the mobile platform). </p> <div class="org-src-container"> <pre class="src src-matlab"> Gm = minreal(G); </pre> </div> <pre class="example"> Gm = minreal(G); 6 states removed. </pre> <p> And indeed, we obtain 12 states. </p> </div> </div> <div id="outline-container-orgbdba4a6" class="outline-3"> <h3 id="orgbdba4a6"><span class="section-number-3">1.3</span> Coordinate transformation</h3> <div class="outline-text-3" id="text-1-3"> <p> We can perform the following transformation using the <code>ss2ss</code> command. </p> <div class="org-src-container"> <pre class="src src-matlab"> Gt = ss2ss(Gm, Gm.C); </pre> </div> <p> Then, the <code>C</code> matrix of <code>Gt</code> is the unity matrix which means that the states of the state space model are equal to the measurements \(\bm{Y}\). </p> <p> The measurements are the 6 displacement and 6 velocities of mobile platform with respect to \(\{B\}\). </p> <p> We could perform the transformation by hand: </p> <div class="org-src-container"> <pre class="src src-matlab"> At = Gm.C<span class="org-type">*</span>Gm.A<span class="org-type">*</span>pinv(Gm.C); Bt = Gm.C<span class="org-type">*</span>Gm.B; Ct = eye(12); Dt = zeros(12, 6); Gt = ss(At, Bt, Ct, Dt); </pre> </div> </div> </div> <div id="outline-container-org11e3698" class="outline-3"> <h3 id="org11e3698"><span class="section-number-3">1.4</span> Analysis</h3> <div class="outline-text-3" id="text-1-4"> <div class="org-src-container"> <pre class="src src-matlab"> [V,D] = eig(Gt.A); </pre> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <thead> <tr> <th scope="col" class="org-right">Mode Number</th> <th scope="col" class="org-right">Resonance Frequency [Hz]</th> <th scope="col" class="org-right">Damping Ratio [%]</th> </tr> </thead> <tbody> <tr> <td class="org-right">1.0</td> <td class="org-right">780.6</td> <td class="org-right">0.4</td> </tr> <tr> <td class="org-right">2.0</td> <td class="org-right">780.6</td> <td class="org-right">0.3</td> </tr> <tr> <td class="org-right">3.0</td> <td class="org-right">903.9</td> <td class="org-right">0.3</td> </tr> <tr> <td class="org-right">4.0</td> <td class="org-right">1061.4</td> <td class="org-right">0.3</td> </tr> <tr> <td class="org-right">5.0</td> <td class="org-right">1061.4</td> <td class="org-right">0.2</td> </tr> <tr> <td class="org-right">6.0</td> <td class="org-right">1269.6</td> <td class="org-right">0.2</td> </tr> </tbody> </table> </div> </div> <div id="outline-container-org1db5fc4" class="outline-3"> <h3 id="org1db5fc4"><span class="section-number-3">1.5</span> Visualizing the modes</h3> <div class="outline-text-3" id="text-1-5"> <p> To visualize the i’th mode, we may excite the system using the inputs \(U_i\) such that \(B U_i\) is co-linear to \(\xi_i\) (the mode we want to excite). </p> <p> \[ U(t) = e^{\alpha t} ( ) \] </p> <p> Let’s first sort the modes and just take the modes corresponding to a eigenvalue with a positive imaginary part. </p> <div class="org-src-container"> <pre class="src src-matlab"> ws = imag(diag(D)); [ws,I] = sort(ws) ws = ws(7<span class="org-type">:</span>end); I = I(7<span class="org-type">:</span>end); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(ws)</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> i_mode = I(<span class="org-constant">i</span>); <span class="org-comment">% the argument is the i'th mode</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> lambda_i = D(i_mode, i_mode); xi_i = V(<span class="org-type">:</span>,i_mode); a_i = real(lambda_i); b_i = imag(lambda_i); </pre> </div> <p> Let do 10 periods of the mode. </p> <div class="org-src-container"> <pre class="src src-matlab"> t = linspace(0, 10<span class="org-type">/</span>(imag(lambda_i)<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span>), 1000); U_i = pinv(Gt.B) <span class="org-type">*</span> real(xi_i <span class="org-type">*</span> lambda_i <span class="org-type">*</span> (cos(b_i <span class="org-type">*</span> t) <span class="org-type">+</span> 1<span class="org-constant">i</span><span class="org-type">*</span>sin(b_i <span class="org-type">*</span> t))); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> U = timeseries(U_i, t); </pre> </div> <p> Simulation: </p> <div class="org-src-container"> <pre class="src src-matlab"> load(<span class="org-string">'mat/conf_simscape.mat'</span>); <span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simscape</span>, <span class="org-string">'StopTime'</span>, num2str(t(<span class="org-variable-name">end</span>))); <span class="org-matlab-simulink-keyword">sim</span>(mdl); </pre> </div> <p> Save the movie of the mode shape. </p> <div class="org-src-container"> <pre class="src src-matlab"> smwritevideo(mdl, sprintf(<span class="org-string">'figs/mode%i'</span>, <span class="org-constant">i</span>), ... <span class="org-string">'PlaybackSpeedRatio'</span>, 1<span class="org-type">/</span>(b_i<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span>), ... <span class="org-string">'FrameRate'</span>, 30, ... <span class="org-string">'FrameSize'</span>, [800, 400]); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-keyword">end</span> </pre> </div> <div id="orgd5bd1cd" class="figure"> <p><img src="figs/mode1.gif" alt="mode1.gif" /> </p> <p><span class="figure-number">Figure 1: </span>Identified mode - 1</p> </div> <div id="org5c59f9a" class="figure"> <p><img src="figs/mode3.gif" alt="mode3.gif" /> </p> <p><span class="figure-number">Figure 2: </span>Identified mode - 3</p> </div> <div id="org0f2e8c4" class="figure"> <p><img src="figs/mode5.gif" alt="mode5.gif" /> </p> <p><span class="figure-number">Figure 3: </span>Identified mode - 5</p> </div> </div> </div> </div> <div id="outline-container-orgfeed9a3" class="outline-2"> <h2 id="orgfeed9a3"><span class="section-number-2">2</span> Transmissibility Analysis</h2> <div class="outline-text-2" id="text-2"> <p> <a id="org5213401"></a> </p> </div> <div id="outline-container-org7c6996a" class="outline-3"> <h3 id="org7c6996a"><span class="section-number-3">2.1</span> Initialize the Stewart platform</h3> <div class="outline-text-3" id="text-2-1"> <div class="org-src-container"> <pre class="src src-matlab"> stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3); </pre> </div> <p> We set the rotation point of the ground to be at the same point at frames \(\{A\}\) and \(\{B\}\). </p> <div class="org-src-container"> <pre class="src src-matlab"> ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A); payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>); controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); </pre> </div> </div> </div> <div id="outline-container-org279dcc8" class="outline-3"> <h3 id="org279dcc8"><span class="section-number-3">2.2</span> Transmissibility</h3> <div class="outline-text-3" id="text-2-2"> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_model'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/D_w'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span> io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> T = linearize(mdl, io, options); T.InputName = {<span class="org-string">'Wdx'</span>, <span class="org-string">'Wdy'</span>, <span class="org-string">'Wdz'</span>, <span class="org-string">'Wrx'</span>, <span class="org-string">'Wry'</span>, <span class="org-string">'Wrz'</span>}; T.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>}; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> freqs = logspace(1, 4, 1000); <span class="org-type">figure</span>; <span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span> <span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span> subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy); hold on; plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); ylim([1e<span class="org-type">-</span>5, 10]); xlim([freqs(1), freqs(end)]); <span class="org-keyword">if</span> ix <span class="org-type"><</span> 6 xticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">if</span> iy <span class="org-type">></span> 1 yticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">end</span> <span class="org-keyword">end</span> </pre> </div> <p> From (<a href="#citeproc_bib_item_1">Preumont et al. 2007</a>), one can use the Frobenius norm of the transmissibility matrix to obtain a scalar indicator of the transmissibility performance of the system: </p> \begin{align*} \| \bm{T}(\omega) \| &= \sqrt{\text{Trace}[\bm{T}(\omega) \bm{T}(\omega)^H]}\\ &= \sqrt{\Sigma_{i=1}^6 \Sigma_{j=1}^6 |T_{ij}|^2} \end{align*} <div class="org-src-container"> <pre class="src src-matlab"> freqs = logspace(1, 4, 1000); T_norm = zeros(length(freqs), 1); <span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span> T_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>)); <span class="org-keyword">end</span> </pre> </div> <p> And we normalize by a factor \(\sqrt{6}\) to obtain a performance metric comparable to the transmissibility of a one-axis isolator: \[ \Gamma(\omega) = \|\bm{T}(\omega)\| / \sqrt{6} \] </p> <div class="org-src-container"> <pre class="src src-matlab"> Gamma = T_norm<span class="org-type">/</span>sqrt(6); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-type">figure</span>; plot(freqs, Gamma) <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); </pre> </div> </div> </div> </div> <div id="outline-container-org3ad92e9" class="outline-2"> <h2 id="org3ad92e9"><span class="section-number-2">3</span> Compliance Analysis</h2> <div class="outline-text-2" id="text-3"> <p> <a id="org39baa25"></a> </p> </div> <div id="outline-container-org5ba3096" class="outline-3"> <h3 id="org5ba3096"><span class="section-number-3">3.1</span> Initialize the Stewart platform</h3> <div class="outline-text-3" id="text-3-1"> <div class="org-src-container"> <pre class="src src-matlab"> stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3); </pre> </div> <p> We set the rotation point of the ground to be at the same point at frames \(\{A\}\) and \(\{B\}\). </p> <div class="org-src-container"> <pre class="src src-matlab"> ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>); controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); </pre> </div> </div> </div> <div id="outline-container-org26cb46a" class="outline-3"> <h3 id="org26cb46a"><span class="section-number-3">3.2</span> Compliance</h3> <div class="outline-text-3" id="text-3-2"> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_model'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/F_ext'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span> io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> C = linearize(mdl, io, options); C.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>}; C.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>}; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> freqs = logspace(1, 4, 1000); <span class="org-type">figure</span>; <span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span> <span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span> subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy); hold on; plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); ylim([1e<span class="org-type">-</span>10, 1e<span class="org-type">-</span>3]); xlim([freqs(1), freqs(end)]); <span class="org-keyword">if</span> ix <span class="org-type"><</span> 6 xticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">if</span> iy <span class="org-type">></span> 1 yticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">end</span> <span class="org-keyword">end</span> </pre> </div> <p> We can try to use the Frobenius norm to obtain a scalar value representing the 6-dof compliance of the Stewart platform. </p> <div class="org-src-container"> <pre class="src src-matlab"> freqs = logspace(1, 4, 1000); C_norm = zeros(length(freqs), 1); <span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span> C_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>)); <span class="org-keyword">end</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-type">figure</span>; plot(freqs, C_norm) <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); </pre> </div> </div> </div> </div> <div id="outline-container-org51e266f" class="outline-2"> <h2 id="org51e266f"><span class="section-number-2">4</span> Functions</h2> <div class="outline-text-2" id="text-4"> </div> <div id="outline-container-org25ca725" class="outline-3"> <h3 id="org25ca725"><span class="section-number-3">4.1</span> Compute the Transmissibility</h3> <div class="outline-text-3" id="text-4-1"> <p> <a id="org78f2be2"></a> </p> </div> <div id="outline-container-orgeae7abf" class="outline-4"> <h4 id="orgeae7abf">Function description</h4> <div class="outline-text-4" id="text-orgeae7abf"> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-keyword">function</span> <span class="org-variable-name">[T, T_norm, freqs]</span> = <span class="org-function-name">computeTransmissibility</span>(<span class="org-variable-name">args</span>) <span class="org-comment">% computeTransmissibility -</span> <span class="org-comment">%</span> <span class="org-comment">% Syntax: [T, T_norm, freqs] = computeTransmissibility(args)</span> <span class="org-comment">%</span> <span class="org-comment">% Inputs:</span> <span class="org-comment">% - args - Structure with the following fields:</span> <span class="org-comment">% - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm</span> <span class="org-comment">% - freqs [] - Frequency vector to estimate the Frobenius norm</span> <span class="org-comment">%</span> <span class="org-comment">% Outputs:</span> <span class="org-comment">% - T [6x6 ss] - Transmissibility matrix</span> <span class="org-comment">% - T_norm [length(freqs)x1] - Frobenius norm of the Transmissibility matrix</span> <span class="org-comment">% - freqs [length(freqs)x1] - Frequency vector in [Hz]</span> </pre> </div> </div> </div> <div id="outline-container-orge4c0895" class="outline-4"> <h4 id="orge4c0895">Optional Parameters</h4> <div class="outline-text-4" id="text-orge4c0895"> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-keyword">arguments</span> <span class="org-variable-name">args</span>.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span> <span class="org-variable-name">args</span>.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000) <span class="org-keyword">end</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> freqs = args.freqs; </pre> </div> </div> </div> <div id="outline-container-org17a8811" class="outline-4"> <h4 id="org17a8811">Identification of the Transmissibility Matrix</h4> <div class="outline-text-4" id="text-org17a8811"> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_model'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/D_w'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span> io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> T = linearize(mdl, io, options); T.InputName = {<span class="org-string">'Wdx'</span>, <span class="org-string">'Wdy'</span>, <span class="org-string">'Wdz'</span>, <span class="org-string">'Wrx'</span>, <span class="org-string">'Wry'</span>, <span class="org-string">'Wrz'</span>}; T.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>}; </pre> </div> <p> If wanted, the 6x6 transmissibility matrix is plotted. </p> <div class="org-src-container"> <pre class="src src-matlab"> p_handle = zeros(6<span class="org-type">*</span>6,1); <span class="org-keyword">if</span> args.plots fig = <span class="org-type">figure</span>; <span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span> <span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span> p_handle((ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy) = subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy); hold on; plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); <span class="org-keyword">if</span> ix <span class="org-type"><</span> 6 xticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">if</span> iy <span class="org-type">></span> 1 yticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">end</span> <span class="org-keyword">end</span> linkaxes(p_handle, <span class="org-string">'xy'</span>) xlim([freqs(1), freqs(end)]); ylim([1e<span class="org-type">-</span>5, 1e2]); han = <span class="org-type">axes</span>(fig, <span class="org-string">'visible'</span>, <span class="org-string">'off'</span>); han.XLabel.Visible = <span class="org-string">'on'</span>; han.YLabel.Visible = <span class="org-string">'on'</span>; xlabel(han, <span class="org-string">'Frequency [Hz]'</span>); ylabel(han, <span class="org-string">'Transmissibility [m/m]'</span>); <span class="org-keyword">end</span> </pre> </div> </div> </div> <div id="outline-container-orgfd96322" class="outline-4"> <h4 id="orgfd96322">Computation of the Frobenius norm</h4> <div class="outline-text-4" id="text-orgfd96322"> <div class="org-src-container"> <pre class="src src-matlab"> T_norm = zeros(length(freqs), 1); <span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span> T_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>)); <span class="org-keyword">end</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> T_norm = T_norm<span class="org-type">/</span>sqrt(6); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-keyword">if</span> args.plots <span class="org-type">figure</span>; plot(freqs, T_norm) <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'Transmissibility - Frobenius Norm'</span>); <span class="org-keyword">end</span> </pre> </div> </div> </div> </div> <div id="outline-container-orgb6e05b3" class="outline-3"> <h3 id="orgb6e05b3"><span class="section-number-3">4.2</span> Compute the Compliance</h3> <div class="outline-text-3" id="text-4-2"> <p> <a id="org13d7e8a"></a> </p> </div> <div id="outline-container-orgafb57d0" class="outline-4"> <h4 id="orgafb57d0">Function description</h4> <div class="outline-text-4" id="text-orgafb57d0"> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-keyword">function</span> <span class="org-variable-name">[C, C_norm, freqs]</span> = <span class="org-function-name">computeCompliance</span>(<span class="org-variable-name">args</span>) <span class="org-comment">% computeCompliance -</span> <span class="org-comment">%</span> <span class="org-comment">% Syntax: [C, C_norm, freqs] = computeCompliance(args)</span> <span class="org-comment">%</span> <span class="org-comment">% Inputs:</span> <span class="org-comment">% - args - Structure with the following fields:</span> <span class="org-comment">% - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm</span> <span class="org-comment">% - freqs [] - Frequency vector to estimate the Frobenius norm</span> <span class="org-comment">%</span> <span class="org-comment">% Outputs:</span> <span class="org-comment">% - C [6x6 ss] - Compliance matrix</span> <span class="org-comment">% - C_norm [length(freqs)x1] - Frobenius norm of the Compliance matrix</span> <span class="org-comment">% - freqs [length(freqs)x1] - Frequency vector in [Hz]</span> </pre> </div> </div> </div> <div id="outline-container-orga00af61" class="outline-4"> <h4 id="orga00af61">Optional Parameters</h4> <div class="outline-text-4" id="text-orga00af61"> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-keyword">arguments</span> <span class="org-variable-name">args</span>.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span> <span class="org-variable-name">args</span>.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000) <span class="org-keyword">end</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> freqs = args.freqs; </pre> </div> </div> </div> <div id="outline-container-org2c35042" class="outline-4"> <h4 id="org2c35042">Identification of the Compliance Matrix</h4> <div class="outline-text-4" id="text-org2c35042"> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_model'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/F_ext'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% External forces [N, N*m]</span> io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> C = linearize(mdl, io, options); C.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>}; C.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>}; </pre> </div> <p> If wanted, the 6x6 transmissibility matrix is plotted. </p> <div class="org-src-container"> <pre class="src src-matlab"> p_handle = zeros(6<span class="org-type">*</span>6,1); <span class="org-keyword">if</span> args.plots fig = <span class="org-type">figure</span>; <span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span> <span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span> p_handle((ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy) = subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy); hold on; plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); <span class="org-keyword">if</span> ix <span class="org-type"><</span> 6 xticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">if</span> iy <span class="org-type">></span> 1 yticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">end</span> <span class="org-keyword">end</span> linkaxes(p_handle, <span class="org-string">'xy'</span>) xlim([freqs(1), freqs(end)]); han = <span class="org-type">axes</span>(fig, <span class="org-string">'visible'</span>, <span class="org-string">'off'</span>); han.XLabel.Visible = <span class="org-string">'on'</span>; han.YLabel.Visible = <span class="org-string">'on'</span>; xlabel(han, <span class="org-string">'Frequency [Hz]'</span>); ylabel(han, <span class="org-string">'Compliance [m/N, rad/(N*m)]'</span>); <span class="org-keyword">end</span> </pre> </div> </div> </div> <div id="outline-container-orgbc9a383" class="outline-4"> <h4 id="orgbc9a383">Computation of the Frobenius norm</h4> <div class="outline-text-4" id="text-orgbc9a383"> <div class="org-src-container"> <pre class="src src-matlab"> freqs = args.freqs; C_norm = zeros(length(freqs), 1); <span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span> C_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>)); <span class="org-keyword">end</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"> <span class="org-keyword">if</span> args.plots <span class="org-type">figure</span>; plot(freqs, C_norm) <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'Compliance - Frobenius Norm'</span>); <span class="org-keyword">end</span> </pre> </div> <style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><h2 class='citeproc-org-bib-h2'>Bibliography</h2> <div class="csl-bib-body"> <div class="csl-entry"><a name="citeproc_bib_item_1"></a>Preumont, A., M. Horodinca, I. Romanescu, B. de Marneffe, M. Avraam, A. Deraemaeker, F. Bossens, and A. Abu Hanieh. 2007. “A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform.” <i>Journal of Sound and Vibration</i> 300 (3-5):644–61. <a href="https://doi.org/10.1016/j.jsv.2006.07.050">https://doi.org/10.1016/j.jsv.2006.07.050</a>.</div> </div> </div> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2021-01-08 ven. 15:29</p> </div> </body> </html>