function [P, R] = forwardKinematicsApprox(stewart, args) % forwardKinematicsApprox - Computed the approximate pose of {B} with respect to {A} from the length of each strut and using % the Jacobian Matrix % % Syntax: [P, R] = forwardKinematicsApprox(stewart, args) % % Inputs: % - stewart - A structure with the following fields % - kinematics.J [6x6] - The Jacobian Matrix % - args - Can have the following fields: % - dL [6x1] - Displacement of each strut [m] % % Outputs: % - P [3x1] - The estimated position of {B} with respect to {A} % - R [3x3] - The estimated rotation matrix that gives the orientation of {B} with respect to {A} arguments stewart args.dL (6,1) double {mustBeNumeric} = zeros(6,1) end assert(isfield(stewart.kinematics, 'J'), 'stewart.kinematics should have attribute J') J = stewart.kinematics.J; X = J\args.dL; P = X(1:3); theta = norm(X(4:6)); s = X(4:6)/theta; R = [s(1)^2*(1-cos(theta)) + cos(theta) , s(1)*s(2)*(1-cos(theta)) - s(3)*sin(theta), s(1)*s(3)*(1-cos(theta)) + s(2)*sin(theta); s(2)*s(1)*(1-cos(theta)) + s(3)*sin(theta), s(2)^2*(1-cos(theta)) + cos(theta), s(2)*s(3)*(1-cos(theta)) - s(1)*sin(theta); s(3)*s(1)*(1-cos(theta)) - s(2)*sin(theta), s(3)*s(2)*(1-cos(theta)) + s(1)*sin(theta), s(3)^2*(1-cos(theta)) + cos(theta)];