#+TITLE: Stewart Platform - Vibration Isolation :DRAWER: #+STARTUP: overview #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ./index.html #+HTML_LINK_UP: ./index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results file raw replace #+PROPERTY: header-args:latex+ :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports results #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") :END: * HAC-LAC (Cascade) Control - Integral Control ** Introduction In this section, we wish to study the use of the High Authority Control - Low Authority Control (HAC-LAC) architecture on the Stewart platform. The control architectures are shown in Figures [[fig:control_arch_hac_iff]] and [[fig:control_arch_hac_dvf]]. First, the LAC loop is closed (the LAC control is described [[file:active-damping.org][here]]), and then the HAC controller is designed and the outer loop is closed. #+begin_src latex :file control_arch_hac_iff.pdf \begin{tikzpicture} % Blocs \node[block={2.0cm}{2.0cm}] (P) {}; \node[above] at (P.north) {Plant}; \node[block, below=0.7 of P] (Kiff) {$\bm{K}_\text{IFF}$}; \node[block, below=0.7 of Kiff] (Khac) {$\bm{K}_\text{HAC}$}; % Add \node[addb, left=1 of P] (add) {}; \node[block, left=1 of add] (J) {$\bm{J}^{-T}$}; % Input and outputs coordinates \coordinate[] (outputhac) at ($(P.south east)!0.75!(P.north east)$); \coordinate[] (outputiff) at ($(P.south east)!0.25!(P.north east)$); \draw[->] (outputiff) node[above right]{$\bm{\tau}_m$} -- ++(0.8, 0) |- (Kiff.east); \draw[->] (outputhac) node[above right]{$\bm{\mathcal{X}}$} -- ++(1.6, 0) |- (Khac.east); \draw[->] (Kiff.west) -| (add.south); \draw[->] (J.east) -- (add.west); \draw[<-] (J.west) node[above left]{$\bm{\mathcal{F}}$} -- ++(-0.8, 0) |- (Khac.west); \draw[->] (add.east) -- (P.west) node[above left]{$\bm{\tau}$}; \end{tikzpicture} #+end_src #+name: fig:control_arch_hac_iff #+caption: HAC-LAC architecture with IFF #+RESULTS: [[file:figs/control_arch_hac_iff.png]] #+begin_src latex :file control_arch_hac_dvf.pdf \begin{tikzpicture} % Blocs \node[block={2.0cm}{2.0cm}] (P) {}; \node[above] at (P.north) {Plant}; \node[block, below=0.7 of P] (Kdvf) {$\bm{K}_\text{DVF}$}; \node[block, below=0.7 of Kdvf] (Khac) {$\bm{K}_\text{HAC}$}; % Add \node[addb, left=1 of P] (add) {}; \node[block, left=1 of add] (J) {$\bm{J}^{-T}$}; % Input and outputs coordinates \coordinate[] (outputhac) at ($(P.south east)!0.75!(P.north east)$); \coordinate[] (outputdvf) at ($(P.south east)!0.25!(P.north east)$); \draw[->] (outputdvf) node[above right]{$\delta \bm{\mathcal{L}}_m$} -- ++(0.8, 0) |- (Kdvf.east); \draw[->] (outputhac) node[above right]{$\bm{\mathcal{X}}$} -- ++(1.6, 0) |- (Khac.east); \draw[->] (Kdvf.west) -| (add.south); \draw[->] (J.east) -- (add.west); \draw[<-] (J.west) node[above left]{$\bm{\mathcal{F}}$} -- ++(-0.8, 0) |- (Khac.west); \draw[->] (add.east) -- (P.west) node[above left]{$\bm{\tau}$}; \end{tikzpicture} #+end_src #+name: fig:control_arch_hac_dvf #+caption: HAC-LAC architecture with DVF #+RESULTS: [[file:figs/control_arch_hac_dvf.png]] ** Matlab Init :noexport: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab simulinkproject('../'); #+end_src #+begin_src matlab open('stewart_platform_model.slx') #+end_src ** Initialization We first initialize the Stewart platform. #+begin_src matlab stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, 'type', 'none'); #+end_src The rotation point of the ground is located at the origin of frame $\{A\}$. #+begin_src matlab ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); payload = initializePayload('type', 'none'); #+end_src ** Identification *** Introduction :ignore: We identify the transfer function from the actuator forces $\bm{\tau}$ to the absolute displacement of the mobile platform $\bm{\mathcal{X}}$ in three different cases: - Open Loop plant - Already damped plant using Integral Force Feedback - Already damped plant using Direct velocity feedback *** HAC - Without LAC #+begin_src matlab controller = initializeController('type', 'open-loop'); #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_ol = linearize(mdl, io); G_ol.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_ol.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; #+end_src *** HAC - IFF #+begin_src matlab controller = initializeController('type', 'iff'); K_iff = -(1e4/s)*eye(6); #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_iff = linearize(mdl, io); G_iff.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_iff.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; #+end_src *** HAC - DVF #+begin_src matlab controller = initializeController('type', 'dvf'); K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6); #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_dvf = linearize(mdl, io); G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; #+end_src ** Control Architecture We use the Jacobian to express the actuator forces in the cartesian frame, and thus we obtain the transfer functions from $\bm{\mathcal{F}}$ to $\bm{\mathcal{X}}$. #+begin_src matlab Gc_ol = minreal(G_ol)/stewart.kinematics.J'; Gc_ol.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; Gc_iff = minreal(G_iff)/stewart.kinematics.J'; Gc_iff.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; Gc_dvf = minreal(G_dvf)/stewart.kinematics.J'; Gc_dvf.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; #+end_src We then design a controller based on the transfer functions from $\bm{\mathcal{F}}$ to $\bm{\mathcal{X}}$, finally, we will pre-multiply the controller by $\bm{J}^{-T}$. ** 6x6 Plant Comparison #+begin_src matlab :exports none p_handle = zeros(6*6,1); fig = figure; for ix = 1:6 for iy = 1:6 p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy); hold on; set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gc_ol(ix, iy), freqs, 'Hz')))); set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(Gc_iff(ix, iy), freqs, 'Hz')))); set(gca,'ColorOrderIndex',3); plot(freqs, abs(squeeze(freqresp(Gc_dvf(ix, iy), freqs, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); if ix < 6 xticklabels({}); end if iy > 1 yticklabels({}); end end end linkaxes(p_handle, 'xy') xlim([freqs(1), freqs(end)]); ylim([1e-9 1e-3]); han = axes(fig, 'visible', 'off'); han.XLabel.Visible = 'on'; han.YLabel.Visible = 'on'; xlabel(han, 'Frequency [Hz]'); ylabel(han, 'Plant'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/hac_lac_coupling_jacobian.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:hac_lac_coupling_jacobian #+caption: Norm of the transfer functions from $\bm{\mathcal{F}}$ to $\bm{\mathcal{X}}$ ([[./figs/hac_lac_coupling_jacobian.png][png]], [[./figs/hac_lac_coupling_jacobian.pdf][pdf]]) [[file:figs/hac_lac_coupling_jacobian.png]] ** HAC - DVF *** Plant #+begin_src matlab :exports none freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(freqs, abs(squeeze(freqresp(Gc_dvf('Dx', 'Fx'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc_dvf('Dy', 'Fy'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc_dvf('Dz', 'Fz'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc_dvf('Rx', 'Mx'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc_dvf('Ry', 'My'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc_dvf('Rz', 'Mz'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_dvf('Dx', 'Fx'), freqs, 'Hz'))), 'DisplayName', 'Dx/Fx'); plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_dvf('Dy', 'Fy'), freqs, 'Hz'))), 'DisplayName', 'Dy/Fy'); plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_dvf('Dz', 'Fz'), freqs, 'Hz'))), 'DisplayName', 'Dz/Fz'); plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_dvf('Rx', 'Mx'), freqs, 'Hz'))), 'DisplayName', 'Rx/Mx'); plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_dvf('Ry', 'My'), freqs, 'Hz'))), 'DisplayName', 'Ry/My'); plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_dvf('Rz', 'Mz'), freqs, 'Hz'))), 'DisplayName', 'Rz/Mz'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); legend('location', 'northeast'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/hac_lac_plant_dvf.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:hac_lac_plant_dvf #+caption: Diagonal elements of the plant for HAC control when DVF is previously applied ([[./figs/hac_lac_plant_dvf.png][png]], [[./figs/hac_lac_plant_dvf.pdf][pdf]]) [[file:figs/hac_lac_plant_dvf.png]] *** Controller Design We design a diagonal controller with equal bandwidth for the 6 terms. The controller is a pure integrator with a small lead near the crossover. #+begin_src matlab wc = 2*pi*300; % Wanted Bandwidth [rad/s] h = 1.2; H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h)); Kd_dvf = diag(1./abs(diag(freqresp(1/s*Gc_dvf, wc)))) .* H_lead .* 1/s; #+end_src #+begin_src matlab :exports none freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(freqs, abs(squeeze(freqresp(Kd_dvf(1,1)*Gc_dvf('Dx', 'Fx'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Kd_dvf(2,2)*Gc_dvf('Dy', 'Fy'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Kd_dvf(3,3)*Gc_dvf('Dz', 'Fz'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Kd_dvf(4,4)*Gc_dvf('Rx', 'Mx'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Kd_dvf(5,5)*Gc_dvf('Ry', 'My'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Kd_dvf(6,6)*Gc_dvf('Rz', 'Mz'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_dvf(1,1)*Gc_dvf('Dx', 'Fx'), freqs, 'Hz'))), 'DisplayName', 'Dx/Fx'); plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_dvf(2,2)*Gc_dvf('Dy', 'Fy'), freqs, 'Hz'))), 'DisplayName', 'Dy/Fy'); plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_dvf(3,3)*Gc_dvf('Dz', 'Fz'), freqs, 'Hz'))), 'DisplayName', 'Dz/Fz'); plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_dvf(4,4)*Gc_dvf('Rx', 'Mx'), freqs, 'Hz'))), 'DisplayName', 'Rx/Mx'); plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_dvf(5,5)*Gc_dvf('Ry', 'My'), freqs, 'Hz'))), 'DisplayName', 'Ry/My'); plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_dvf(6,6)*Gc_dvf('Rz', 'Mz'), freqs, 'Hz'))), 'DisplayName', 'Rz/Mz'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); legend('location', 'northeast'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/hac_lac_loop_gain_dvf.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:hac_lac_loop_gain_dvf #+caption: Diagonal elements of the Loop Gain for the HAC control ([[./figs/hac_lac_loop_gain_dvf.png][png]], [[./figs/hac_lac_loop_gain_dvf.pdf][pdf]]) [[file:figs/hac_lac_loop_gain_dvf.png]] Finally, we pre-multiply the diagonal controller by $\bm{J}^{-T}$ prior implementation. #+begin_src matlab K_hac_dvf = inv(stewart.kinematics.J')*Kd_dvf; #+end_src *** Obtained Performance We identify the transmissibility and compliance of the system. #+begin_src matlab controller = initializeController('type', 'open-loop'); [T_ol, T_norm_ol, freqs] = computeTransmissibility(); [C_ol, C_norm_ol, ~] = computeCompliance(); #+end_src #+begin_src matlab controller = initializeController('type', 'dvf'); [T_dvf, T_norm_dvf, ~] = computeTransmissibility(); [C_dvf, C_norm_dvf, ~] = computeCompliance(); #+end_src #+begin_src matlab controller = initializeController('type', 'hac-dvf'); [T_hac_dvf, T_norm_hac_dvf, ~] = computeTransmissibility(); [C_hac_dvf, C_norm_hac_dvf, ~] = computeCompliance(); #+end_src #+begin_src matlab :exports none figure; subplot(1,2,1); hold on; plot(freqs, T_norm_ol) plot(freqs, T_norm_dvf) plot(freqs, T_norm_hac_dvf) set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Transmissibility - Frobenius Norm'); subplot(1,2,2); hold on; plot(freqs, C_norm_ol, 'DisplayName', 'OL') plot(freqs, C_norm_dvf, 'DisplayName', 'DVF') plot(freqs, C_norm_hac_dvf, 'DisplayName', 'HAC-DVF') set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Compliance - Frobenius Norm'); legend(); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/hac_lac_C_T_dvf.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:hac_lac_C_T_dvf #+caption: Obtained Compliance and Transmissibility ([[./figs/hac_lac_C_T_dvf.png][png]], [[./figs/hac_lac_C_T_dvf.pdf][pdf]]) [[file:figs/hac_lac_C_T_dvf.png]] ** HAC - IFF *** Plant #+begin_src matlab :exports none freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(freqs, abs(squeeze(freqresp(Gc_iff('Dx', 'Fx'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc_iff('Dy', 'Fy'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc_iff('Dz', 'Fz'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc_iff('Rx', 'Mx'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc_iff('Ry', 'My'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc_iff('Rz', 'Mz'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_iff('Dx', 'Fx'), freqs, 'Hz'))), 'DisplayName', 'Dx/Fx'); plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_iff('Dy', 'Fy'), freqs, 'Hz'))), 'DisplayName', 'Dy/Fy'); plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_iff('Dz', 'Fz'), freqs, 'Hz'))), 'DisplayName', 'Dz/Fz'); plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_iff('Rx', 'Mx'), freqs, 'Hz'))), 'DisplayName', 'Rx/Mx'); plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_iff('Ry', 'My'), freqs, 'Hz'))), 'DisplayName', 'Ry/My'); plot(freqs, 180/pi*angle(squeeze(freqresp(Gc_iff('Rz', 'Mz'), freqs, 'Hz'))), 'DisplayName', 'Rz/Mz'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); legend('location', 'northeast'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/hac_lac_plant_iff.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:hac_lac_plant_iff #+caption: Diagonal elements of the plant for HAC control when IFF is previously applied ([[./figs/hac_lac_plant_iff.png][png]], [[./figs/hac_lac_plant_iff.pdf][pdf]]) [[file:figs/hac_lac_plant_iff.png]] *** Controller Design We design a diagonal controller with equal bandwidth for the 6 terms. The controller is a pure integrator with a small lead near the crossover. #+begin_src matlab wc = 2*pi*300; % Wanted Bandwidth [rad/s] h = 1.2; H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h)); Kd_iff = diag(1./abs(diag(freqresp(1/s*Gc_iff, wc)))) .* H_lead .* 1/s; #+end_src #+begin_src matlab :exports none freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(freqs, abs(squeeze(freqresp(Kd_iff(1,1)*Gc_iff('Dx', 'Fx'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Kd_iff(2,2)*Gc_iff('Dy', 'Fy'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Kd_iff(3,3)*Gc_iff('Dz', 'Fz'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Kd_iff(4,4)*Gc_iff('Rx', 'Mx'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Kd_iff(5,5)*Gc_iff('Ry', 'My'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Kd_iff(6,6)*Gc_iff('Rz', 'Mz'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_iff(1,1)*Gc_iff('Dx', 'Fx'), freqs, 'Hz'))), 'DisplayName', 'Dx/Fx'); plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_iff(2,2)*Gc_iff('Dy', 'Fy'), freqs, 'Hz'))), 'DisplayName', 'Dy/Fy'); plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_iff(3,3)*Gc_iff('Dz', 'Fz'), freqs, 'Hz'))), 'DisplayName', 'Dz/Fz'); plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_iff(4,4)*Gc_iff('Rx', 'Mx'), freqs, 'Hz'))), 'DisplayName', 'Rx/Mx'); plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_iff(5,5)*Gc_iff('Ry', 'My'), freqs, 'Hz'))), 'DisplayName', 'Ry/My'); plot(freqs, 180/pi*angle(squeeze(freqresp(Kd_iff(6,6)*Gc_iff('Rz', 'Mz'), freqs, 'Hz'))), 'DisplayName', 'Rz/Mz'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); legend('location', 'northeast'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/hac_lac_loop_gain_iff.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:hac_lac_loop_gain_iff #+caption: Diagonal elements of the Loop Gain for the HAC control ([[./figs/hac_lac_loop_gain_iff.png][png]], [[./figs/hac_lac_loop_gain_iff.pdf][pdf]]) [[file:figs/hac_lac_loop_gain_iff.png]] Finally, we pre-multiply the diagonal controller by $\bm{J}^{-T}$ prior implementation. #+begin_src matlab K_hac_iff = inv(stewart.kinematics.J')*Kd_iff; #+end_src *** Obtained Performance We identify the transmissibility and compliance of the system. #+begin_src matlab controller = initializeController('type', 'open-loop'); [T_ol, T_norm_ol, freqs] = computeTransmissibility(); [C_ol, C_norm_ol, ~] = computeCompliance(); #+end_src #+begin_src matlab controller = initializeController('type', 'iff'); [T_iff, T_norm_iff, ~] = computeTransmissibility(); [C_iff, C_norm_iff, ~] = computeCompliance(); #+end_src #+begin_src matlab controller = initializeController('type', 'hac-iff'); [T_hac_iff, T_norm_hac_iff, ~] = computeTransmissibility(); [C_hac_iff, C_norm_hac_iff, ~] = computeCompliance(); #+end_src #+begin_src matlab :exports none figure; subplot(1,2,1); hold on; plot(freqs, T_norm_ol) plot(freqs, T_norm_iff) plot(freqs, T_norm_hac_iff) set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Transmissibility - Frobenius Norm'); subplot(1,2,2); hold on; plot(freqs, C_norm_ol, 'DisplayName', 'OL') plot(freqs, C_norm_iff, 'DisplayName', 'IFF') plot(freqs, C_norm_hac_iff, 'DisplayName', 'HAC-IFF') set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Compliance - Frobenius Norm'); legend(); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/hac_lac_C_T_iff.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:hac_lac_C_T_iff #+caption: Obtained Compliance and Transmissibility ([[./figs/hac_lac_C_T_iff.png][png]], [[./figs/hac_lac_C_T_iff.pdf][pdf]]) [[file:figs/hac_lac_C_T_iff.png]] ** Comparison #+begin_src matlab :exports none p_handle = zeros(6*6,1); fig = figure; for ix = 1:6 for iy = 1:6 p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy); hold on; set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(C_ol(ix, iy), freqs, 'Hz')))); set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(C_hac_dvf(ix, iy), freqs, 'Hz')))); set(gca,'ColorOrderIndex',3); plot(freqs, abs(squeeze(freqresp(C_hac_iff(ix, iy), freqs, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); if ix < 6 xticklabels({}); end if iy > 1 yticklabels({}); end end end linkaxes(p_handle, 'xy') ylim([1e-10, 1e-3]); xlim([freqs(1), freqs(end)]); han = axes(fig, 'visible', 'off'); han.XLabel.Visible = 'on'; han.YLabel.Visible = 'on'; xlabel(han, 'Frequency [Hz]'); ylabel(han, 'Compliance'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/hac_lac_C_full_comparison.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:hac_lac_C_full_comparison #+caption: Comparison of the norm of the Compliance matrices for the HAC-LAC architecture ([[./figs/hac_lac_C_full_comparison.png][png]], [[./figs/hac_lac_C_full_comparison.pdf][pdf]]) [[file:figs/hac_lac_C_full_comparison.png]] #+begin_src matlab :exports none p_handle = zeros(6*6,1); fig = figure; for ix = 1:6 for iy = 1:6 p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy); hold on; set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(T_ol(ix, iy), freqs, 'Hz')))); set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(T_hac_dvf(ix, iy), freqs, 'Hz')))); set(gca,'ColorOrderIndex',3); plot(freqs, abs(squeeze(freqresp(T_hac_iff(ix, iy), freqs, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); if ix < 6 xticklabels({}); end if iy > 1 yticklabels({}); end end end linkaxes(p_handle, 'xy') ylim([1e-5, 10]); xlim([freqs(1), freqs(end)]); han = axes(fig, 'visible', 'off'); han.XLabel.Visible = 'on'; han.YLabel.Visible = 'on'; xlabel(han, 'Frequency [Hz]'); ylabel(han, 'Transmissibility'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/hac_lac_T_full_comparison.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:hac_lac_T_full_comparison #+caption: Comparison of the norm of the Transmissibility matrices for the HAC-LAC architecture ([[./figs/hac_lac_T_full_comparison.png][png]], [[./figs/hac_lac_T_full_comparison.pdf][pdf]]) [[file:figs/hac_lac_T_full_comparison.png]] #+begin_src matlab :exports none figure; subplot(1,2,1); hold on; plot(freqs, T_norm_ol) plot(freqs, T_norm_hac_dvf) plot(freqs, T_norm_hac_iff) set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Transmissibility - Frobenius Norm'); subplot(1,2,2); hold on; plot(freqs, C_norm_ol, 'DisplayName', 'OL') plot(freqs, C_norm_hac_dvf, 'DisplayName', 'HAC-DVF') plot(freqs, C_norm_hac_iff, 'DisplayName', 'HAC-IFF') set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Compliance - Frobenius Norm'); legend(); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/hac_lac_C_T_comparison.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:hac_lac_C_T_comparison #+caption: Comparison of the Frobenius norm of the Compliance and Transmissibility for the HAC-LAC architecture with both IFF and DVF ([[./figs/hac_lac_C_T_comparison.png][png]], [[./figs/hac_lac_C_T_comparison.pdf][pdf]]) [[file:figs/hac_lac_C_T_comparison.png]] * MIMO Analysis ** Introduction :ignore: Let's define the system as shown in figure [[fig:general_control_names]]. #+begin_src latex :file general_control_names.pdf \begin{tikzpicture} % Blocs \node[block={2.0cm}{2.0cm}] (P) {$P$}; \node[block={1.5cm}{1.5cm}, below=0.7 of P] (K) {$K$}; % Input and outputs coordinates \coordinate[] (inputw) at ($(P.south west)!0.75!(P.north west)$); \coordinate[] (inputu) at ($(P.south west)!0.25!(P.north west)$); \coordinate[] (outputz) at ($(P.south east)!0.75!(P.north east)$); \coordinate[] (outputv) at ($(P.south east)!0.25!(P.north east)$); % Connections and labels \draw[<-] (inputw) node[above left, align=right]{(weighted)\\exogenous inputs\\$w$} -- ++(-1.5, 0); \draw[<-] (inputu) -- ++(-0.8, 0) |- node[left, near start, align=right]{control signals\\$u$} (K.west); \draw[->] (outputz) node[above right, align=left]{(weighted)\\exogenous outputs\\$z$} -- ++(1.5, 0); \draw[->] (outputv) -- ++(0.8, 0) |- node[right, near start, align=left]{sensed output\\$v$} (K.east); \end{tikzpicture} #+end_src #+name: fig:general_control_names #+caption: General Control Architecture #+RESULTS: [[file:figs/general_control_names.png]] #+name: tab:general_plant_signals #+caption: Signals definition for the generalized plant | *Exogenous Inputs* | $\bm{\mathcal{X}}_w$ | Ground motion | | | $\bm{\mathcal{F}}_d$ | External Forces applied to the Payload | | | $\bm{r}$ | Reference signal for tracking | |---------------------+-----------------------------+----------------------------------------| | *Exogenous Outputs* | $\bm{\mathcal{X}}$ | Absolute Motion of the Payload | | | $\bm{\tau}$ | Actuator Rate | |---------------------+-----------------------------+----------------------------------------| | *Sensed Outputs* | $\bm{\tau}_m$ | Force Sensors in each leg | | | $\delta \bm{\mathcal{L}}_m$ | Measured displacement of each leg | | | $\bm{\mathcal{X}}$ | Absolute Motion of the Payload | |---------------------+-----------------------------+----------------------------------------| | *Control Signals* | $\bm{\tau}$ | Actuator Inputs | ** Matlab Init :noexport: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab simulinkproject('../'); #+end_src #+begin_src matlab open('stewart_platform_model.slx') #+end_src ** Initialization We first initialize the Stewart platform. #+begin_src matlab stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, 'type', 'none'); #+end_src The rotation point of the ground is located at the origin of frame $\{A\}$. #+begin_src matlab ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); payload = initializePayload('type', 'none'); #+end_src ** Identification *** HAC - Without LAC #+begin_src matlab controller = initializeController('type', 'open-loop'); #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_ol = linearize(mdl, io); G_ol.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_ol.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; #+end_src *** HAC - DVF #+begin_src matlab controller = initializeController('type', 'dvf'); K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6); #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_dvf = linearize(mdl, io); G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; #+end_src *** Cartesian Frame #+begin_src matlab Gc_ol = minreal(G_ol)/stewart.kinematics.J'; Gc_ol.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; Gc_dvf = minreal(G_dvf)/stewart.kinematics.J'; Gc_dvf.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; #+end_src ** Singular Value Decomposition #+begin_src matlab freqs = logspace(1, 4, 1000); U_ol = zeros(6,6,length(freqs)); S_ol = zeros(6,length(freqs)); V_ol = zeros(6,6,length(freqs)); U_dvf = zeros(6,6,length(freqs)); S_dvf = zeros(6,length(freqs)); V_dvf = zeros(6,6,length(freqs)); for i = 1:length(freqs) [U,S,V] = svd(freqresp(Gc_ol, freqs(i), 'Hz')); U_ol(:,:,i) = U; S_ol(:,i) = diag(S); V_ol(:,:,i) = V; [U,S,V] = svd(freqresp(Gc_dvf, freqs(i), 'Hz')); U_dvf(:,:,i) = U; S_dvf(:,i) = diag(S); V_dvf(:,:,i) = V; end #+end_src #+begin_src matlab :exports none figure; ax1 = subplot(1,2,1); hold on; plot(freqs, S_ol(1,:), '-'); plot(freqs, S_ol(2,:), '--'); plot(freqs, S_ol(3,:), '-.'); plot(freqs, S_ol(4,:), '--'); plot(freqs, S_ol(5,:), '-'); plot(freqs, S_ol(6,:), '-.'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Singular Values'); title('Undamped Plant'); ax2 = subplot(1,2,2); hold on; plot(freqs, S_dvf(1,:), '-' , 'DisplayName', '$\sigma_1$'); plot(freqs, S_dvf(2,:), '--', 'DisplayName', '$\sigma_2$'); plot(freqs, S_dvf(3,:), '-.', 'DisplayName', '$\sigma_3$'); plot(freqs, S_dvf(4,:), '-' , 'DisplayName', '$\sigma_4$'); plot(freqs, S_dvf(5,:), '--', 'DisplayName', '$\sigma_5$'); plot(freqs, S_dvf(6,:), '-.', 'DisplayName', '$\sigma_6$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Singular Values'); title('Damped Plant - DVF'); linkaxes([ax1, ax2], 'xy'); legend(); #+end_src #+begin_src matlab :exports none figure; ax1 = subplot(1,2,1); hold on; for i = 1:6 plot(freqs, abs(squeeze(V_ol(i,1,:))), '-' , 'DisplayName', Gc_ol.InputName{i}); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Singular Values'); legend(); ax2 = subplot(1,2,2); hold on; for i = 1:6 plot(freqs, abs(squeeze(U_ol(i,1,:))), '-' , 'DisplayName', Gc_ol.OutputName{i}); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Singular Values'); legend(); linkaxes([ax1,ax2], 'x'); #+end_src * Diagonal Control based on the damped plant ** Introduction :ignore: From cite:skogestad07_multiv_feedb_contr, a simple approach to multivariable control is the following two-step procedure: 1. *Design a pre-compensator* $W_1$, which counteracts the interactions in the plant and results in a new *shaped plant* $G_S(s) = G(s) W_1(s)$ which is *more diagonal and easier to control* than the original plant $G(s)$. 2. *Design a diagonal controller* $K_S(s)$ for the shaped plant using methods similar to those for SISO systems. The overall controller is then: \[ K(s) = W_1(s)K_s(s) \] There are mainly three different cases: 1. *Dynamic decoupling*: $G_S(s)$ is diagonal at all frequencies. For that we can choose $W_1(s) = G^{-1}(s)$ and this is an inverse-based controller. 2. *Steady-state decoupling*: $G_S(0)$ is diagonal. This can be obtained by selecting $W_1(s) = G^{-1}(0)$. 3. *Approximate decoupling at frequency $\w_0$*: $G_S(j\w_0)$ is as diagonal as possible. Decoupling the system at $\w_0$ is a good choice because the effect on performance of reducing interaction is normally greatest at this frequency. ** Initialization We first initialize the Stewart platform. #+begin_src matlab stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, 'type', 'none'); #+end_src The rotation point of the ground is located at the origin of frame $\{A\}$. #+begin_src matlab ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); payload = initializePayload('type', 'none'); #+end_src ** Identification #+begin_src matlab controller = initializeController('type', 'dvf'); K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6); #+end_src #+begin_src matlab %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_dvf = linearize(mdl, io); G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; #+end_src ** Steady State Decoupling *** Pre-Compensator Design We choose $W_1 = G^{-1}(0)$. #+begin_src matlab W1 = inv(freqresp(G_dvf, 0)); #+end_src The (static) decoupled plant is $G_s(s) = G(s) W_1$. #+begin_src matlab Gs = G_dvf*W1; #+end_src In the case of the Stewart platform, the pre-compensator for static decoupling is equal to $\mathcal{K} \bm{J}$: \begin{align*} W_1 &= \left( \frac{\bm{\mathcal{X}}}{\bm{\tau}}(s=0) \right)^{-1}\\ &= \left( \frac{\bm{\mathcal{X}}}{\bm{\tau}}(s=0) \bm{J}^T \right)^{-1}\\ &= \left( \bm{C} \bm{J}^T \right)^{-1}\\ &= \left( \bm{J}^{-1} \mathcal{K}^{-1} \right)^{-1}\\ &= \mathcal{K} \bm{J} \end{align*} The static decoupled plant is schematic shown in Figure [[fig:control_arch_static_decoupling]] and the bode plots of its diagonal elements are shown in Figure [[fig:static_decoupling_diagonal_plant]]. #+begin_src latex :file control_arch_static_decoupling.pdf \begin{tikzpicture} % Blocs \node[block] (G) {$G(s)$}; \node[block, left=1 of G] (J) {$\mathcal{K}\bm{J}$}; \node[block, left=1 of J] (Ks) {$\bm{K}_s(s)$}; \draw[->] (Ks.east) -- (J.west); \draw[->] (J.east) -- (G.west) node[above left]{$\bm{\tau}$}; \draw[->] (G.east) node[above right]{$\bm{\mathcal{X}}$} -| ++(0.8, -0.8) -| ($(Ks.west) + (-0.8, 0)$) -- (Ks.west); \begin{scope}[on background layer] \node[fit={(J.north west) (G.south east)}, inner sep=4pt, draw, dashed, fill=black!20!white, label={$G_s(s)$}] {}; \end{scope} \end{tikzpicture} #+end_src #+name: fig:control_arch_static_decoupling #+caption: Static Decoupling of the Stewart platform #+RESULTS: [[file:figs/control_arch_static_decoupling.png]] #+begin_src matlab :exports none freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(Gs(i, i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(Gs(i, i), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/static_decoupling_diagonal_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:static_decoupling_diagonal_plant #+caption: Bode plot of the diagonal elements of $G_s(s)$ ([[./figs/static_decoupling_diagonal_plant.png][png]], [[./figs/static_decoupling_diagonal_plant.pdf][pdf]]) [[file:figs/static_decoupling_diagonal_plant.png]] *** Diagonal Control Design We design a diagonal controller $K_s(s)$ that consist of a pure integrator and a lead around the crossover. #+begin_src matlab wc = 2*pi*300; % Wanted Bandwidth [rad/s] h = 1.5; H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h)); Ks_dvf = diag(1./abs(diag(freqresp(1/s*Gs, wc)))) .* H_lead .* 1/s; #+end_src The overall controller is then $K(s) = W_1 K_s(s)$ as shown in Figure [[fig:control_arch_static_decoupling_K]]. #+begin_src matlab K_hac_dvf = W1 * Ks_dvf; #+end_src #+begin_src latex :file control_arch_static_decoupling_K.pdf \begin{tikzpicture} % Blocs \node[block] (G) {$G(s)$}; \node[block, left=1 of G] (J) {$\mathcal{K}\bm{J}$}; \node[block, left=1 of J] (Ks) {$\bm{K}_s(s)$}; \draw[->] (Ks.east) -- (J.west); \draw[->] (J.east) -- (G.west) node[above left]{$\bm{\tau}$}; \draw[->] (G.east) node[above right]{$\bm{\mathcal{X}}$} -| ++(0.8, -0.8) -| ($(Ks.west) + (-0.8, 0)$) -- (Ks.west); \begin{scope}[on background layer] \node[fit={(Ks.north west) (J.south east)}, inner sep=4pt, draw, dashed, fill=black!20!white, label={$K(s)$}] {}; \end{scope} \end{tikzpicture} #+end_src #+name: fig:control_arch_static_decoupling_K #+caption: Controller including the static decoupling matrix #+RESULTS: [[file:figs/control_arch_static_decoupling_K.png]] *** Results We identify the transmissibility and compliance of the Stewart platform under open-loop and closed-loop control. #+begin_src matlab controller = initializeController('type', 'open-loop'); [T_ol, T_norm_ol, freqs] = computeTransmissibility(); [C_ol, C_norm_ol, ~] = computeCompliance(); #+end_src #+begin_src matlab controller = initializeController('type', 'hac-dvf'); [T_hac_dvf, T_norm_hac_dvf, ~] = computeTransmissibility(); [C_hac_dvf, C_norm_hac_dvf, ~] = computeCompliance(); #+end_src The results are shown in figure #+begin_src matlab :exports none figure; subplot(1,2,1); hold on; plot(freqs, T_norm_ol) plot(freqs, T_norm_hac_dvf) set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Transmissibility - Frobenius Norm'); subplot(1,2,2); hold on; plot(freqs, C_norm_ol, 'DisplayName', 'OL') plot(freqs, C_norm_hac_dvf, 'DisplayName', 'HAC-DVF - Static decoupl.') set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Compliance - Frobenius Norm'); legend(); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/static_decoupling_C_T_frobenius_norm.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:static_decoupling_C_T_frobenius_norm #+caption: Frobenius norm of the Compliance and transmissibility matrices ([[./figs/static_decoupling_C_T_frobenius_norm.png][png]], [[./figs/static_decoupling_C_T_frobenius_norm.pdf][pdf]]) [[file:figs/static_decoupling_C_T_frobenius_norm.png]] ** Decoupling at Crossover - [ ] Find a method for real approximation of a complex matrix * Functions ** =initializeController=: Initialize the Controller :PROPERTIES: :header-args:matlab+: :tangle ../src/initializeController.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: <> *** Function description :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [controller] = initializeController(args) % initializeController - Initialize the Controller % % Syntax: [] = initializeController(args) % % Inputs: % - args - Can have the following fields: #+end_src *** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments args.type char {mustBeMember(args.type, {'open-loop', 'iff', 'dvf', 'hac-iff', 'hac-dvf'})} = 'open-loop' end #+end_src *** Structure initialization :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab controller = struct(); #+end_src *** Add Type :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab switch args.type case 'open-loop' controller.type = 0; case 'iff' controller.type = 1; case 'dvf' controller.type = 2; case 'hac-iff' controller.type = 3; case 'hac-dvf' controller.type = 4; end #+end_src