#+TITLE: Stewart Platform - Decentralized Active Damping :DRAWER: #+HTML_LINK_HOME: ./index.html #+HTML_LINK_UP: ./index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results raw replace :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports both #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs :END: * Introduction :ignore: The following decentralized active damping techniques are briefly studied: - Inertial Control (proportional feedback of the absolute velocity): Section [[sec:active_damping_inertial]] - Integral Force Feedback: Section [[sec:active_damping_iff]] - Direct feedback of the relative velocity of each strut: Section [[sec:active_damping_dvf]] * Inertial Control :PROPERTIES: :header-args:matlab+: :tangle matlab/active_damping_inertial.m :header-args:matlab+: :comments org :mkdirp yes :END: <> ** Introduction :ignore: ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab simulinkproject('./'); #+end_src #+begin_src matlab open('simulink/stewart_active_damping.slx') #+end_src ** Identification of the Dynamics #+begin_src matlab stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'disable', true); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); #+end_src #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_active_damping'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Vm'], 1, 'openoutput'); io_i = io_i + 1; % Absolute velocity of each leg [m/s] %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'}; #+end_src The transfer function from actuator forces to force sensors is shown in Figure [[fig:inertial_plant_coupling]]. #+begin_src matlab :exports none freqs = logspace(1, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 2:6 set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(G(['Vm', num2str(i)], 'F1'), freqs, 'Hz')))); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G('Vm1', 'F1'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 2:6 set(gca,'ColorOrderIndex',2); p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Vm', num2str(i)], 'F1'), freqs, 'Hz')))); end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Vm1', 'F1'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2], {'$F_{m,i}/F_i$', '$F_{m,j}/F_i$'}) linkaxes([ax1,ax2],'x'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/inertial_plant_coupling.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:inertial_plant_coupling #+caption: Transfer function from the Actuator force $F_{i}$ to the absolute velocity of the same leg $v_{m,i}$ and to the absolute velocity of the other legs $v_{m,j}$ with $i \neq j$ in grey ([[./figs/inertial_plant_coupling.png][png]], [[./figs/inertial_plant_coupling.pdf][pdf]]) [[file:figs/inertial_plant_coupling.png]] ** Effect of the Flexible Joint stiffness on the Dynamics We add some stiffness and damping in the flexible joints and we re-identify the dynamics. #+begin_src matlab stewart = initializeJointDynamics(stewart); Gf = linearize(mdl, io, options); Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; Gf.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'}; #+end_src The new dynamics from force actuator to force sensor is shown in Figure [[fig:inertial_plant_flexible_joint_decentralized]]. #+begin_src matlab :exports none freqs = logspace(1, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Vm1', 'F1'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gf('Vm1', 'F1'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Vm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints'); plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Vm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'southwest') linkaxes([ax1,ax2],'x'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/inertial_plant_flexible_joint_decentralized.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:inertial_plant_flexible_joint_decentralized #+caption: Transfer function from the Actuator force $F_{i}$ to the absolute velocity sensor $v_{m,i}$ ([[./figs/inertial_plant_flexible_joint_decentralized.png][png]], [[./figs/inertial_plant_flexible_joint_decentralized.pdf][pdf]]) [[file:figs/inertial_plant_flexible_joint_decentralized.png]] ** Obtained Damping The control is a performed in a decentralized manner. The $6 \times 6$ control is a diagonal matrix with pure proportional action on the diagonal: \[ K(s) = g \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{bmatrix} \] The root locus is shown in figure [[fig:root_locus_inertial_rot_stiffness]] and the obtained pole damping function of the control gain is shown in figure [[fig:pole_damping_gain_inertial_rot_stiffness]]. #+begin_src matlab :exports none gains = logspace(0, 5, 1000); figure; hold on; plot(real(pole(G)), imag(pole(G)), 'x'); plot(real(pole(Gf)), imag(pole(Gf)), 'x'); set(gca,'ColorOrderIndex',1); plot(real(tzero(G)), imag(tzero(G)), 'o'); plot(real(tzero(Gf)), imag(tzero(Gf)), 'o'); for i = 1:length(gains) cl_poles = pole(feedback(G, gains(i)*eye(6))); set(gca,'ColorOrderIndex',1); plot(real(cl_poles), imag(cl_poles), '.'); cl_poles = pole(feedback(Gf, gains(i)*eye(6))); set(gca,'ColorOrderIndex',2); plot(real(cl_poles), imag(cl_poles), '.'); end ylim([0,2000]); xlim([-2000,0]); xlabel('Real Part') ylabel('Imaginary Part') axis square #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/root_locus_inertial_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:root_locus_inertial_rot_stiffness #+caption: Root Locus plot with Decentralized Inertial Control when considering the stiffness of flexible joints ([[./figs/root_locus_inertial_rot_stiffness.png][png]], [[./figs/root_locus_inertial_rot_stiffness.pdf][pdf]]) [[file:figs/root_locus_inertial_rot_stiffness.png]] #+begin_src matlab :exports none gains = logspace(0, 5, 1000); figure; hold on; for i = 1:length(gains) set(gca,'ColorOrderIndex',1); cl_poles = pole(feedback(G, gains(i)*eye(6))); poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2; plot(gains(i)*ones(size(poles_damp)), poles_damp, '.'); set(gca,'ColorOrderIndex',2); cl_poles = pole(feedback(Gf, gains(i)*eye(6))); poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2; plot(gains(i)*ones(size(poles_damp)), poles_damp, '.'); end xlabel('Control Gain'); ylabel('Damping of the Poles'); set(gca, 'XScale', 'log'); ylim([0,pi/2]); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/pole_damping_gain_inertial_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:pole_damping_gain_inertial_rot_stiffness #+caption: Damping of the poles with respect to the gain of the Decentralized Inertial Control when considering the stiffness of flexible joints ([[./figs/pole_damping_gain_inertial_rot_stiffness.png][png]], [[./figs/pole_damping_gain_inertial_rot_stiffness.pdf][pdf]]) [[file:figs/pole_damping_gain_inertial_rot_stiffness.png]] ** Conclusion #+begin_important Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors. #+end_important * Integral Force Feedback :PROPERTIES: :header-args:matlab+: :tangle matlab/active_damping_iff.m :header-args:matlab+: :comments org :mkdirp yes :END: <> ** Introduction :ignore: ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab simulinkproject('./'); #+end_src #+begin_src matlab open('simulink/stewart_active_damping.slx') #+end_src ** Identification of the Dynamics with perfect Joints We first initialize the Stewart platform without joint stiffness. #+begin_src matlab stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeAmplifiedStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'disable', true); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); #+end_src And we identify the dynamics from force actuators to force sensors. #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_active_damping'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensor Outputs [N] %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'}; #+end_src The transfer function from actuator forces to force sensors is shown in Figure [[fig:iff_plant_coupling]]. #+begin_src matlab :exports none freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 2:6 set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(G(['Fm', num2str(i)], 'F1'), freqs, 'Hz')))); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G('Fm1', 'F1'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 2:6 set(gca,'ColorOrderIndex',2); p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Fm', num2str(i)], 'F1'), freqs, 'Hz')))); end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Fm1', 'F1'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2], {'$F_{m,i}/F_i$', '$F_{m,j}/F_i$'}) linkaxes([ax1,ax2],'x'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/iff_plant_coupling.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:iff_plant_coupling #+caption: Transfer function from the Actuator force $F_{i}$ to the Force sensor of the same leg $F_{m,i}$ and to the force sensor of the other legs $F_{m,j}$ with $i \neq j$ in grey ([[./figs/iff_plant_coupling.png][png]], [[./figs/iff_plant_coupling.pdf][pdf]]) [[file:figs/iff_plant_coupling.png]] ** Effect of the Flexible Joint stiffness on the Dynamics We add some stiffness and damping in the flexible joints and we re-identify the dynamics. #+begin_src matlab stewart = initializeJointDynamics(stewart); Gf = linearize(mdl, io, options); Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; Gf.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'}; #+end_src The new dynamics from force actuator to force sensor is shown in Figure [[fig:iff_plant_flexible_joint_decentralized]]. #+begin_src matlab :exports none freqs = logspace(1, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Fm1', 'F1'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gf('Fm1', 'F1'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Fm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints'); plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Fm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'southwest') linkaxes([ax1,ax2],'x'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/iff_plant_flexible_joint_decentralized.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:iff_plant_flexible_joint_decentralized #+caption: Transfer function from the Actuator force $F_{i}$ to the force sensor $F_{m,i}$ ([[./figs/iff_plant_flexible_joint_decentralized.png][png]], [[./figs/iff_plant_flexible_joint_decentralized.pdf][pdf]]) [[file:figs/iff_plant_flexible_joint_decentralized.png]] ** Obtained Damping The control is a performed in a decentralized manner. The $6 \times 6$ control is a diagonal matrix with pure integration action on the diagonal: \[ K(s) = g \begin{bmatrix} \frac{1}{s} & & 0 \\ & \ddots & \\ 0 & & \frac{1}{s} \end{bmatrix} \] The root locus is shown in figure [[fig:root_locus_iff_rot_stiffness]] and the obtained pole damping function of the control gain is shown in figure [[fig:pole_damping_gain_iff_rot_stiffness]]. #+begin_src matlab :exports none gains = logspace(0, 5, 1000); figure; hold on; plot(real(pole(G)), imag(pole(G)), 'x'); plot(real(pole(Gf)), imag(pole(Gf)), 'x'); set(gca,'ColorOrderIndex',1); plot(real(tzero(G)), imag(tzero(G)), 'o'); plot(real(tzero(Gf)), imag(tzero(Gf)), 'o'); for i = 1:length(gains) cl_poles = pole(feedback(G, (gains(i)/s)*eye(6))); set(gca,'ColorOrderIndex',1); plot(real(cl_poles), imag(cl_poles), '.'); cl_poles = pole(feedback(Gf, (gains(i)/s)*eye(6))); set(gca,'ColorOrderIndex',2); plot(real(cl_poles), imag(cl_poles), '.'); end ylim([0,inf]); xlim([-3000,0]); xlabel('Real Part') ylabel('Imaginary Part') axis square #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/root_locus_iff_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:root_locus_iff_rot_stiffness #+caption: Root Locus plot with Decentralized Integral Force Feedback when considering the stiffness of flexible joints ([[./figs/root_locus_iff_rot_stiffness.png][png]], [[./figs/root_locus_iff_rot_stiffness.pdf][pdf]]) [[file:figs/root_locus_iff_rot_stiffness.png]] #+begin_src matlab :exports none gains = logspace(0, 5, 1000); figure; hold on; for i = 1:length(gains) set(gca,'ColorOrderIndex',1); cl_poles = pole(feedback(G, (gains(i)/s)*eye(6))); poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2; plot(gains(i)*ones(size(poles_damp)), poles_damp, '.'); set(gca,'ColorOrderIndex',2); cl_poles = pole(feedback(Gf, (gains(i)/s)*eye(6))); poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2; plot(gains(i)*ones(size(poles_damp)), poles_damp, '.'); end xlabel('Control Gain'); ylabel('Damping of the Poles'); set(gca, 'XScale', 'log'); ylim([0,pi/2]); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/pole_damping_gain_iff_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:pole_damping_gain_iff_rot_stiffness #+caption: Damping of the poles with respect to the gain of the Decentralized Integral Force Feedback when considering the stiffness of flexible joints ([[./figs/pole_damping_gain_iff_rot_stiffness.png][png]], [[./figs/pole_damping_gain_iff_rot_stiffness.pdf][pdf]]) [[file:figs/pole_damping_gain_iff_rot_stiffness.png]] ** Conclusion #+begin_important The joint stiffness has a huge impact on the attainable active damping performance when using force sensors. Thus, if Integral Force Feedback is to be used in a Stewart platform with flexible joints, the rotational stiffness of the joints should be minimized. #+end_important * Direct Velocity Feedback :PROPERTIES: :header-args:matlab+: :tangle matlab/active_damping_dvf.m :header-args:matlab+: :comments org :mkdirp yes :END: <> ** Introduction :ignore: ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab simulinkproject('./'); #+end_src #+begin_src matlab open('simulink/stewart_active_damping.slx') #+end_src ** Identification of the Dynamics with perfect Joints We first initialize the Stewart platform without joint stiffness. #+begin_src matlab stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'disable', true); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); #+end_src And we identify the dynamics from force actuators to force sensors. #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_active_damping'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Dm'], 1, 'openoutput'); io_i = io_i + 1; % Relative Displacement Outputs [N] %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'}; #+end_src The transfer function from actuator forces to relative motion sensors is shown in Figure [[fig:dvf_plant_coupling]]. #+begin_src matlab :exports none freqs = logspace(1, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 2:6 set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(G(['Dm', num2str(i)], 'F1'), freqs, 'Hz')))); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G('Dm1', 'F1'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 2:6 set(gca,'ColorOrderIndex',2); p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Dm', num2str(i)], 'F1'), freqs, 'Hz')))); end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Dm1', 'F1'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2], {'$D_{m,i}/F_i$', '$D_{m,j}/F_i$'}) linkaxes([ax1,ax2],'x'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/dvf_plant_coupling.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:dvf_plant_coupling #+caption: Transfer function from the Actuator force $F_{i}$ to the Relative Motion Sensor $D_{m,j}$ with $i \neq j$ ([[./figs/dvf_plant_coupling.png][png]], [[./figs/dvf_plant_coupling.pdf][pdf]]) [[file:figs/dvf_plant_coupling.png]] ** Effect of the Flexible Joint stiffness on the Dynamics We add some stiffness and damping in the flexible joints and we re-identify the dynamics. #+begin_src matlab stewart = initializeJointDynamics(stewart); Gf = linearize(mdl, io, options); Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; Gf.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'}; #+end_src The new dynamics from force actuator to relative motion sensor is shown in Figure [[fig:dvf_plant_flexible_joint_decentralized]]. #+begin_src matlab :exports none freqs = logspace(1, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Dm1', 'F1'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gf('Dm1', 'F1'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Dm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints'); plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Dm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'northeast'); linkaxes([ax1,ax2],'x'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/dvf_plant_flexible_joint_decentralized.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:dvf_plant_flexible_joint_decentralized #+caption: Transfer function from the Actuator force $F_{i}$ to the relative displacement sensor $D_{m,i}$ ([[./figs/dvf_plant_flexible_joint_decentralized.png][png]], [[./figs/dvf_plant_flexible_joint_decentralized.pdf][pdf]]) [[file:figs/dvf_plant_flexible_joint_decentralized.png]] ** Obtained Damping The control is a performed in a decentralized manner. The $6 \times 6$ control is a diagonal matrix with pure derivative action on the diagonal: \[ K(s) = g \begin{bmatrix} s & & \\ & \ddots & \\ & & s \end{bmatrix} \] The root locus is shown in figure [[fig:root_locus_dvf_rot_stiffness]] and the obtained pole damping function of the control gain is shown in figure [[fig:pole_damping_gain_dvf_rot_stiffness]]. #+begin_src matlab :exports none gains = logspace(0, 5, 1000); figure; hold on; plot(real(pole(G)), imag(pole(G)), 'x'); plot(real(pole(Gf)), imag(pole(Gf)), 'x'); set(gca,'ColorOrderIndex',1); plot(real(tzero(G)), imag(tzero(G)), 'o'); plot(real(tzero(Gf)), imag(tzero(Gf)), 'o'); for i = 1:length(gains) cl_poles = pole(feedback(G, (gains(i)*s)*eye(6))); set(gca,'ColorOrderIndex',1); plot(real(cl_poles), imag(cl_poles), '.'); cl_poles = pole(feedback(Gf, (gains(i)*s)*eye(6))); set(gca,'ColorOrderIndex',2); plot(real(cl_poles), imag(cl_poles), '.'); end ylim([0,inf]); xlim([-3000,0]); xlabel('Real Part') ylabel('Imaginary Part') axis square #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/root_locus_dvf_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:root_locus_dvf_rot_stiffness #+caption: Root Locus plot with Direct Velocity Feedback when considering the Stiffness of flexible joints ([[./figs/root_locus_dvf_rot_stiffness.png][png]], [[./figs/root_locus_dvf_rot_stiffness.pdf][pdf]]) [[file:figs/root_locus_dvf_rot_stiffness.png]] #+begin_src matlab :exports none gains = logspace(0, 5, 1000); figure; hold on; for i = 1:length(gains) set(gca,'ColorOrderIndex',1); cl_poles = pole(feedback(G, (gains(i)*s)*eye(6))); poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2; plot(gains(i)*ones(size(poles_damp)), poles_damp, '.'); set(gca,'ColorOrderIndex',2); cl_poles = pole(feedback(Gf, (gains(i)*s)*eye(6))); poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2; plot(gains(i)*ones(size(poles_damp)), poles_damp, '.'); end xlabel('Control Gain'); ylabel('Damping of the Poles'); set(gca, 'XScale', 'log'); ylim([0,pi/2]); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/pole_damping_gain_dvf_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:pole_damping_gain_dvf_rot_stiffness #+caption: Damping of the poles with respect to the gain of the Direct Velocity Feedback when considering the Stiffness of flexible joints ([[./figs/pole_damping_gain_dvf_rot_stiffness.png][png]], [[./figs/pole_damping_gain_dvf_rot_stiffness.pdf][pdf]]) [[file:figs/pole_damping_gain_dvf_rot_stiffness.png]] ** Conclusion #+begin_important Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors. #+end_important