%% Define some constant values deg2rad = pi/180; x_axis = [1 0 0]; y_axis = [0 1 0]; z_axis = [0 0 1]; %% Connection points on base and top plate w.r.t. World frame at the center of the base plate pos_base = zeros(6, 3); pos_top = zeros(6, 3); alpha_b = BP.leg.ang*deg2rad; % angle de décalage par rapport à 120 deg (pour positionner les supports bases) alpha_t = TP.leg.ang*deg2rad; % +- offset angle from 120 degree spacing on top height = (stewart.h-BP.thickness-TP.thickness-Leg.sphere.bottom-Leg.sphere.top-SP.thickness.bottom-SP.thickness.top)*0.001; % 2 meter height in home configuration radius_b = BP.leg.rad*0.001; % rayon emplacement support base radius_t = TP.leg.rad*0.001; % top radius in meters for i = 1:3 % base points angle_m_b = (2*pi/3)* (i-1) - alpha_b; angle_p_b = (2*pi/3)* (i-1) + alpha_b; pos_base(2*i-1,:) = [radius_b*cos(angle_m_b), radius_b*sin(angle_m_b), 0.0]; pos_base(2*i,:) = [radius_b*cos(angle_p_b), radius_b*sin(angle_p_b), 0.0]; % top points % Top points are 60 degrees offset angle_m_t = (2*pi/3)* (i-1) - alpha_t + 2*pi/6; angle_p_t = (2*pi/3)* (i-1) + alpha_t + 2*pi/6; pos_top(2*i-1,:) = [radius_t*cos(angle_m_t), radius_t*sin(angle_m_t), height]; pos_top(2*i,:) = [radius_t*cos(angle_p_t), radius_t*sin(angle_p_t), height]; end % permute pos_top points so that legs are end points of base and top points pos_top = [pos_top(6,:); pos_top(1:5,:)]; %6th point on top connects to 1st on bottom pos_top_tranform = pos_top - height*[zeros(6, 2),ones(6, 1)]; %% Compute points w.r.t. to the body frame in a 3x6 matrix body_pts = pos_top' - height*[zeros(2,6);ones(1,6)]; %% leg vectors legs = pos_top - pos_base; leg_length = zeros(6, 1); leg_vectors = zeros(6, 3); for i = 1:6 leg_length(i) = norm(legs(i,:)); leg_vectors(i,:) = legs(i,:) / leg_length(i); end Leg.lenght = 1000*leg_length(1)/1.5; %% Calculate revolute and cylindrical axes rev1 = zeros(6, 3); rev2 = zeros(6, 3); rev3 = zeros(6, 3); rev4 = zeros(6, 3); cyl1 = zeros(6, 3); for i = 1:6 rev1(i,:) = cross(leg_vectors(i,:), z_axis); rev1(i,:) = rev1(i,:) / norm(rev1(i,:)); rev3(i,:) = rev1(i,:); rev2(i,:) = - cross(rev1(i,:), leg_vectors(i,:)); rev2(i,:) = rev2(i,:) / norm(rev2(i,:)); rev4(i,:) = rev2(i,:); cyl1(i,:) = leg_vectors(i,:); end %% Coordinate systems lower_leg = struct('origin', [0 0 0], 'rotation', eye(3), 'end_point', [0 0 0]); upper_leg = struct('origin', [0 0 0], 'rotation', eye(3), 'end_point', [0 0 0]); for i = 1:6 lower_leg(i).origin = pos_base(i,:) + (3/8)*legs(i,:); lower_leg(i).end_point = pos_base(i,:) + (3/4)*legs(i,:); lower_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)']; upper_leg(i).origin = pos_base(i,:) + (1-3/8)*legs(i,:); upper_leg(i).end_point = pos_base(i,:) + (1/4)*legs(i,:); upper_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)']; end %% Position Matrix M_pos_base = pos_base + (height+(TP.thickness+Leg.sphere.top+SP.thickness.top+stewart.jacobian)*1e-3)*[zeros(6, 2),ones(6, 1)]; %% Compute Jacobian Matrix J = getJacobianMatrix(leg_vectors, M_pos_base);