#+TITLE: Stewart Platform - Active Damping :DRAWER: #+HTML_LINK_HOME: ./index.html #+HTML_LINK_UP: ./index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs :END: * Inertial Control ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab simulinkproject('./'); #+end_src ** Simscape Model #+begin_src matlab open('simulink/stewart_active_damping.slx') #+end_src ** Initialize the Stewart model #+begin_src matlab stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3); stewart = generateCubicConfiguration(stewart, 'Hc', 40e-3, 'FOc', 45e-3, 'FHa', 5e-3, 'MHb', 5e-3); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart, 'Ki', 1e6*ones(6,1), 'Ci', 1e2*ones(6,1)); stewart = computeJacobian(stewart); #+end_src ** Identification of the Dynamics #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_active_damping'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/WVB'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Dm'], 1, 'openoutput'); io_i = io_i + 1; %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Vx', 'Vy', 'Vz', 'Wx', 'Wy', 'Wz', ... 'D1', 'D2', 'D3', 'D4', 'D5', 'D6'}; #+end_src ** Analysis #+begin_src matlab freqs = 2*pi*logspace(1, 4, 1000); figure; bode(G({'D1', 'D2', 'D3', 'D4', 'D5', 'D6'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}), freqs) figure; bode(stewart.J*G({'Vx', 'Vy', 'Vz', 'Wx', 'Wy', 'Wz'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}), freqs) #+end_src #+begin_src matlab figure; bode(G({'D1', 'D2', 'D3', 'D4', 'D5', 'D6'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}), stewart.J*G({'Vx', 'Vy', 'Vz', 'Wx', 'Wy', 'Wz'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}), freqs) #+end_src ** Conclusion It is similar to use: - one 6dof inertial sensor and the Jacobian the have the velocity of each lim - 6 1dof inertial sensor in each top part of the limbs