<?xml version="1.0" encoding="utf-8"?> <?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2020-02-28 ven. 17:34 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>Stewart Platform - Dynamics Study</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <style type="text/css"> <!--/*--><![CDATA[/*><!--*/ .title { text-align: center; margin-bottom: .2em; } .subtitle { text-align: center; font-size: medium; font-weight: bold; margin-top:0; } .todo { font-family: monospace; color: red; } .done { font-family: monospace; color: green; } .priority { font-family: monospace; color: orange; } .tag { background-color: #eee; font-family: monospace; padding: 2px; font-size: 80%; font-weight: normal; } .timestamp { color: #bebebe; } .timestamp-kwd { color: #5f9ea0; } .org-right { margin-left: auto; margin-right: 0px; text-align: right; } .org-left { margin-left: 0px; margin-right: auto; text-align: left; } .org-center { margin-left: auto; margin-right: auto; text-align: center; } .underline { text-decoration: underline; } #postamble p, #preamble p { font-size: 90%; margin: .2em; } p.verse { margin-left: 3%; } pre { border: 1px solid #ccc; box-shadow: 3px 3px 3px #eee; padding: 8pt; font-family: monospace; overflow: auto; margin: 1.2em; } pre.src { position: relative; overflow: visible; padding-top: 1.2em; } pre.src:before { display: none; position: absolute; background-color: white; top: -10px; right: 10px; padding: 3px; border: 1px solid black; } pre.src:hover:before { display: inline;} /* Languages per Org manual */ pre.src-asymptote:before { content: 'Asymptote'; } pre.src-awk:before { content: 'Awk'; } pre.src-C:before { content: 'C'; } /* pre.src-C++ doesn't work in CSS */ pre.src-clojure:before { content: 'Clojure'; } pre.src-css:before { content: 'CSS'; } pre.src-D:before { content: 'D'; } pre.src-ditaa:before { content: 'ditaa'; } pre.src-dot:before { content: 'Graphviz'; } pre.src-calc:before { content: 'Emacs Calc'; } pre.src-emacs-lisp:before { content: 'Emacs Lisp'; } pre.src-fortran:before { content: 'Fortran'; } pre.src-gnuplot:before { content: 'gnuplot'; } pre.src-haskell:before { content: 'Haskell'; } pre.src-hledger:before { content: 'hledger'; } pre.src-java:before { content: 'Java'; } pre.src-js:before { content: 'Javascript'; } pre.src-latex:before { content: 'LaTeX'; } pre.src-ledger:before { content: 'Ledger'; } pre.src-lisp:before { content: 'Lisp'; } pre.src-lilypond:before { content: 'Lilypond'; } pre.src-lua:before { content: 'Lua'; } pre.src-matlab:before { content: 'MATLAB'; } pre.src-mscgen:before { content: 'Mscgen'; } pre.src-ocaml:before { content: 'Objective Caml'; } pre.src-octave:before { content: 'Octave'; } pre.src-org:before { content: 'Org mode'; } pre.src-oz:before { content: 'OZ'; } pre.src-plantuml:before { content: 'Plantuml'; } pre.src-processing:before { content: 'Processing.js'; } pre.src-python:before { content: 'Python'; } pre.src-R:before { content: 'R'; } pre.src-ruby:before { content: 'Ruby'; } pre.src-sass:before { content: 'Sass'; } pre.src-scheme:before { content: 'Scheme'; } pre.src-screen:before { content: 'Gnu Screen'; } pre.src-sed:before { content: 'Sed'; } pre.src-sh:before { content: 'shell'; } pre.src-sql:before { content: 'SQL'; } pre.src-sqlite:before { content: 'SQLite'; } /* additional languages in org.el's org-babel-load-languages alist */ pre.src-forth:before { content: 'Forth'; } pre.src-io:before { content: 'IO'; } pre.src-J:before { content: 'J'; } pre.src-makefile:before { content: 'Makefile'; } pre.src-maxima:before { content: 'Maxima'; } pre.src-perl:before { content: 'Perl'; } pre.src-picolisp:before { content: 'Pico Lisp'; } pre.src-scala:before { content: 'Scala'; } pre.src-shell:before { content: 'Shell Script'; } pre.src-ebnf2ps:before { content: 'ebfn2ps'; } /* additional language identifiers per "defun org-babel-execute" in ob-*.el */ pre.src-cpp:before { content: 'C++'; } pre.src-abc:before { content: 'ABC'; } pre.src-coq:before { content: 'Coq'; } pre.src-groovy:before { content: 'Groovy'; } /* additional language identifiers from org-babel-shell-names in ob-shell.el: ob-shell is the only babel language using a lambda to put the execution function name together. */ pre.src-bash:before { content: 'bash'; } pre.src-csh:before { content: 'csh'; } pre.src-ash:before { content: 'ash'; } pre.src-dash:before { content: 'dash'; } pre.src-ksh:before { content: 'ksh'; } pre.src-mksh:before { content: 'mksh'; } pre.src-posh:before { content: 'posh'; } /* Additional Emacs modes also supported by the LaTeX listings package */ pre.src-ada:before { content: 'Ada'; } pre.src-asm:before { content: 'Assembler'; } pre.src-caml:before { content: 'Caml'; } pre.src-delphi:before { content: 'Delphi'; } pre.src-html:before { content: 'HTML'; } pre.src-idl:before { content: 'IDL'; } pre.src-mercury:before { content: 'Mercury'; } pre.src-metapost:before { content: 'MetaPost'; } pre.src-modula-2:before { content: 'Modula-2'; } pre.src-pascal:before { content: 'Pascal'; } pre.src-ps:before { content: 'PostScript'; } pre.src-prolog:before { content: 'Prolog'; } pre.src-simula:before { content: 'Simula'; } pre.src-tcl:before { content: 'tcl'; } pre.src-tex:before { content: 'TeX'; } pre.src-plain-tex:before { content: 'Plain TeX'; } pre.src-verilog:before { content: 'Verilog'; } pre.src-vhdl:before { content: 'VHDL'; } pre.src-xml:before { content: 'XML'; } pre.src-nxml:before { content: 'XML'; } /* add a generic configuration mode; LaTeX export needs an additional (add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */ pre.src-conf:before { content: 'Configuration File'; } table { border-collapse:collapse; } caption.t-above { caption-side: top; } caption.t-bottom { caption-side: bottom; } td, th { vertical-align:top; } th.org-right { text-align: center; } th.org-left { text-align: center; } th.org-center { text-align: center; } td.org-right { text-align: right; } td.org-left { text-align: left; } td.org-center { text-align: center; } dt { font-weight: bold; } .footpara { display: inline; } .footdef { margin-bottom: 1em; } .figure { padding: 1em; } .figure p { text-align: center; } .equation-container { display: table; text-align: center; width: 100%; } .equation { vertical-align: middle; } .equation-label { display: table-cell; text-align: right; vertical-align: middle; } .inlinetask { padding: 10px; border: 2px solid gray; margin: 10px; background: #ffffcc; } #org-div-home-and-up { text-align: right; font-size: 70%; white-space: nowrap; } textarea { overflow-x: auto; } .linenr { font-size: smaller } .code-highlighted { background-color: #ffff00; } .org-info-js_info-navigation { border-style: none; } #org-info-js_console-label { font-size: 10px; font-weight: bold; white-space: nowrap; } .org-info-js_search-highlight { background-color: #ffff00; color: #000000; font-weight: bold; } .org-svg { width: 90%; } /*]]>*/--> </style> <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/> <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/> <script src="./js/jquery.min.js"></script> <script src="./js/bootstrap.min.js"></script> <script src="./js/jquery.stickytableheaders.min.js"></script> <script src="./js/readtheorg.js"></script> <script type="text/javascript"> // @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later <!--/*--><![CDATA[/*><!--*/ function CodeHighlightOn(elem, id) { var target = document.getElementById(id); if(null != target) { elem.cacheClassElem = elem.className; elem.cacheClassTarget = target.className; target.className = "code-highlighted"; elem.className = "code-highlighted"; } } function CodeHighlightOff(elem, id) { var target = document.getElementById(id); if(elem.cacheClassElem) elem.className = elem.cacheClassElem; if(elem.cacheClassTarget) target.className = elem.cacheClassTarget; } /*]]>*///--> // @license-end </script> <script> MathJax = { tex: { macros: { bm: ["\\boldsymbol{#1}",1], } } }; </script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="./index.html"> UP </a> | <a accesskey="H" href="./index.html"> HOME </a> </div><div id="content"> <h1 class="title">Stewart Platform - Dynamics Study</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#orgc59e712">1. Compare external forces and forces applied by the actuators</a> <ul> <li><a href="#org4509b7d">1.1. Comparison with fixed support</a></li> <li><a href="#org8662186">1.2. Comparison with a flexible support</a></li> <li><a href="#org920d3c4">1.3. Conclusion</a></li> </ul> </li> <li><a href="#org81ab204">2. Comparison of the static transfer function and the Compliance matrix</a> <ul> <li><a href="#orge7e7242">2.1. Analysis</a></li> <li><a href="#orgbb930ae">2.2. Conclusion</a></li> </ul> </li> </ul> </div> </div> <div id="outline-container-orgc59e712" class="outline-2"> <h2 id="orgc59e712"><span class="section-number-2">1</span> Compare external forces and forces applied by the actuators</h2> <div class="outline-text-2" id="text-1"> <p> In this section, we wish to compare the effect of forces/torques applied by the actuators with the effect of external forces/torques on the displacement of the mobile platform. </p> </div> <div id="outline-container-org4509b7d" class="outline-3"> <h3 id="org4509b7d"><span class="section-number-3">1.1</span> Comparison with fixed support</h3> <div class="outline-text-3" id="text-1-1"> <p> Let’s generate a Stewart platform. </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>); </pre> </div> <p> We don’t put any flexibility below the Stewart platform such that <b>its base is fixed to an inertial frame</b>. We also don’t put any payload on top of the Stewart platform. </p> <div class="org-src-container"> <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); </pre> </div> <p> The transfer function from actuator forces \(\bm{\tau}\) to the relative displacement of the mobile platform \(\mathcal{\bm{X}}\) is extracted. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_model'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span> io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io, options); G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; G.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>}; </pre> </div> <p> Using the Jacobian matrix, we compute the transfer function from force/torques applied by the actuators on the frame \(\{B\}\) fixed to the mobile platform: </p> <div class="org-src-container"> <pre class="src src-matlab">Gc = minreal(G<span class="org-type">*</span>inv(stewart.kinematics.J<span class="org-type">'</span>)); Gc.InputName = {<span class="org-string">'Fnx'</span>, <span class="org-string">'Fny'</span>, <span class="org-string">'Fnz'</span>, <span class="org-string">'Mnx'</span>, <span class="org-string">'Mny'</span>, <span class="org-string">'Mnz'</span>}; </pre> </div> <p> We also extract the transfer function from external forces \(\bm{\mathcal{F}}_{\text{ext}}\) on the frame \(\{B\}\) fixed to the mobile platform to the relative displacement \(\mathcal{\bm{X}}\) of \(\{B\}\) with respect to frame \(\{A\}\): </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Disturbances'</span>], 1, <span class="org-string">'openinput'</span>, [], <span class="org-string">'F_ext'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% External forces/torques applied on {B}</span> io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> Gd = linearize(mdl, io, options); Gd.InputName = {<span class="org-string">'Fex'</span>, <span class="org-string">'Fey'</span>, <span class="org-string">'Fez'</span>, <span class="org-string">'Mex'</span>, <span class="org-string">'Mey'</span>, <span class="org-string">'Mez'</span>}; Gd.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>}; </pre> </div> <p> The comparison of the two transfer functions is shown in Figure <a href="#orgbf9a54a">1</a>. </p> <div id="orgbf9a54a" class="figure"> <p><img src="figs/comparison_Fext_F_fixed_base.png" alt="comparison_Fext_F_fixed_base.png" /> </p> <p><span class="figure-number">Figure 1: </span>Comparison of the transfer functions from \(\bm{\mathcal{F}}\) to \(\mathcal{\bm{X}}\) and from \(\bm{\mathcal{F}}_{\text{ext}}\) to \(\mathcal{\bm{X}}\) (<a href="./figs/comparison_Fext_F_fixed_base.png">png</a>, <a href="./figs/comparison_Fext_F_fixed_base.pdf">pdf</a>)</p> </div> <p> This can be understood from figure <a href="#org8bd3e63">2</a> where \(\mathcal{F}_{x}\) and \(\mathcal{F}_{x,\text{ext}}\) have clearly the same effect on \(\mathcal{X}_{x}\). </p> <div id="org8bd3e63" class="figure"> <p><img src="figs/1dof_actuator_external_forces.png" alt="1dof_actuator_external_forces.png" /> </p> <p><span class="figure-number">Figure 2: </span>Schematic representation of the stewart platform on a rigid support</p> </div> </div> </div> <div id="outline-container-org8662186" class="outline-3"> <h3 id="org8662186"><span class="section-number-3">1.2</span> Comparison with a flexible support</h3> <div class="outline-text-3" id="text-1-2"> <p> We now add a flexible support under the Stewart platform. </p> <div class="org-src-container"> <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'flexible'</span>); </pre> </div> <p> And we perform again the identification. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span> io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io, options); G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; G.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>}; Gc = minreal(G<span class="org-type">*</span>inv(stewart.kinematics.J<span class="org-type">'</span>)); Gc.InputName = {<span class="org-string">'Fnx'</span>, <span class="org-string">'Fny'</span>, <span class="org-string">'Fnz'</span>, <span class="org-string">'Mnx'</span>, <span class="org-string">'Mny'</span>, <span class="org-string">'Mnz'</span>}; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Disturbances'</span>], 1, <span class="org-string">'openinput'</span>, [], <span class="org-string">'F_ext'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% External forces/torques applied on {B}</span> io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> Gd = linearize(mdl, io, options); Gd.InputName = {<span class="org-string">'Fex'</span>, <span class="org-string">'Fey'</span>, <span class="org-string">'Fez'</span>, <span class="org-string">'Mex'</span>, <span class="org-string">'Mey'</span>, <span class="org-string">'Mez'</span>}; Gd.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>}; </pre> </div> <p> The comparison between the obtained transfer functions is shown in Figure <a href="#orga2f2bd5">3</a>. </p> <div id="orga2f2bd5" class="figure"> <p><img src="figs/comparison_Fext_F_flexible_base.png" alt="comparison_Fext_F_flexible_base.png" /> </p> <p><span class="figure-number">Figure 3: </span>Comparison of the transfer functions from \(\bm{\mathcal{F}}\) to \(\mathcal{\bm{X}}\) and from \(\bm{\mathcal{F}}_{\text{ext}}\) to \(\mathcal{\bm{X}}\) (<a href="./figs/comparison_Fext_F_flexible_base.png">png</a>, <a href="./figs/comparison_Fext_F_flexible_base.pdf">pdf</a>)</p> </div> <p> The addition of a flexible support can be schematically represented in Figure <a href="#orgee3ecbe">4</a>. We see that \(\mathcal{F}_{x}\) applies a force both on \(m\) and \(m^{\prime}\) whereas \(\mathcal{F}_{x,\text{ext}}\) only applies a force on \(m\). And thus \(\mathcal{F}_{x}\) and \(\mathcal{F}_{x,\text{ext}}\) have clearly <b>not</b> the same effect on \(\mathcal{X}_{x}\). </p> <div id="orgee3ecbe" class="figure"> <p><img src="figs/2dof_actuator_external_forces.png" alt="2dof_actuator_external_forces.png" /> </p> <p><span class="figure-number">Figure 4: </span>Schematic representation of the stewart platform on top of a flexible support</p> </div> </div> </div> <div id="outline-container-org920d3c4" class="outline-3"> <h3 id="org920d3c4"><span class="section-number-3">1.3</span> Conclusion</h3> <div class="outline-text-3" id="text-1-3"> <div class="important"> <p> The transfer function from forces/torques applied by the actuators on the payload \(\bm{\mathcal{F}} = \bm{J}^T \bm{\tau}\) to the pose of the mobile platform \(\bm{\mathcal{X}}\) is the same as the transfer function from external forces/torques to \(\bm{\mathcal{X}}\) as long as the Stewart platform’s base is fixed. </p> </div> </div> </div> </div> <div id="outline-container-org81ab204" class="outline-2"> <h2 id="org81ab204"><span class="section-number-2">2</span> Comparison of the static transfer function and the Compliance matrix</h2> <div class="outline-text-2" id="text-2"> <p> In this section, we see how the Compliance matrix of the Stewart platform is linked to the static relation between \(\mathcal{\bm{F}}\) to \(\mathcal{\bm{X}}\). </p> </div> <div id="outline-container-orge7e7242" class="outline-3"> <h3 id="orge7e7242"><span class="section-number-3">2.1</span> Analysis</h3> <div class="outline-text-3" id="text-2-1"> <p> Initialization of the Stewart platform. </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>); </pre> </div> <p> No flexibility below the Stewart platform and no payload. </p> <div class="org-src-container"> <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); </pre> </div> <p> Estimation of the transfer function from \(\mathcal{\bm{F}}\) to \(\mathcal{\bm{X}}\): </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_model'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span> io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io, options); G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; G.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>}; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">Gc = minreal(G<span class="org-type">*</span>inv(stewart.kinematics.J<span class="org-type">'</span>)); Gc.InputName = {<span class="org-string">'Fnx'</span>, <span class="org-string">'Fny'</span>, <span class="org-string">'Fnz'</span>, <span class="org-string">'Mnx'</span>, <span class="org-string">'Mny'</span>, <span class="org-string">'Mnz'</span>}; </pre> </div> <p> Let’s first look at the low frequency transfer function matrix from \(\mathcal{\bm{F}}\) to \(\mathcal{\bm{X}}\). </p> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-right">4.7e-08</td> <td class="org-right">-7.2e-19</td> <td class="org-right">5.0e-18</td> <td class="org-right">-8.9e-18</td> <td class="org-right">3.2e-07</td> <td class="org-right">9.9e-18</td> </tr> <tr> <td class="org-right">4.7e-18</td> <td class="org-right">4.7e-08</td> <td class="org-right">-5.7e-18</td> <td class="org-right">-3.2e-07</td> <td class="org-right">-1.6e-17</td> <td class="org-right">-1.7e-17</td> </tr> <tr> <td class="org-right">3.3e-18</td> <td class="org-right">-6.3e-18</td> <td class="org-right">2.1e-08</td> <td class="org-right">4.4e-17</td> <td class="org-right">6.6e-18</td> <td class="org-right">7.4e-18</td> </tr> <tr> <td class="org-right">-3.2e-17</td> <td class="org-right">-3.2e-07</td> <td class="org-right">6.2e-18</td> <td class="org-right">5.2e-06</td> <td class="org-right">-3.5e-16</td> <td class="org-right">6.3e-17</td> </tr> <tr> <td class="org-right">3.2e-07</td> <td class="org-right">2.7e-17</td> <td class="org-right">4.8e-17</td> <td class="org-right">-4.5e-16</td> <td class="org-right">5.2e-06</td> <td class="org-right">-1.2e-19</td> </tr> <tr> <td class="org-right">4.0e-17</td> <td class="org-right">-9.5e-17</td> <td class="org-right">8.4e-18</td> <td class="org-right">4.3e-16</td> <td class="org-right">5.8e-16</td> <td class="org-right">1.7e-06</td> </tr> </tbody> </table> <p> And now at the Compliance matrix. </p> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <tbody> <tr> <td class="org-right">4.7e-08</td> <td class="org-right">-2.0e-24</td> <td class="org-right">7.4e-25</td> <td class="org-right">5.9e-23</td> <td class="org-right">3.2e-07</td> <td class="org-right">5.9e-24</td> </tr> <tr> <td class="org-right">-7.1e-25</td> <td class="org-right">4.7e-08</td> <td class="org-right">2.9e-25</td> <td class="org-right">-3.2e-07</td> <td class="org-right">-5.4e-24</td> <td class="org-right">-3.3e-23</td> </tr> <tr> <td class="org-right">7.9e-26</td> <td class="org-right">-6.4e-25</td> <td class="org-right">2.1e-08</td> <td class="org-right">1.9e-23</td> <td class="org-right">5.3e-25</td> <td class="org-right">-6.5e-40</td> </tr> <tr> <td class="org-right">1.4e-23</td> <td class="org-right">-3.2e-07</td> <td class="org-right">1.3e-23</td> <td class="org-right">5.2e-06</td> <td class="org-right">4.9e-22</td> <td class="org-right">-3.8e-24</td> </tr> <tr> <td class="org-right">3.2e-07</td> <td class="org-right">7.6e-24</td> <td class="org-right">1.2e-23</td> <td class="org-right">6.9e-22</td> <td class="org-right">5.2e-06</td> <td class="org-right">-2.6e-22</td> </tr> <tr> <td class="org-right">7.3e-24</td> <td class="org-right">-3.2e-23</td> <td class="org-right">-1.6e-39</td> <td class="org-right">9.9e-23</td> <td class="org-right">-3.3e-22</td> <td class="org-right">1.7e-06</td> </tr> </tbody> </table> </div> </div> <div id="outline-container-orgbb930ae" class="outline-3"> <h3 id="orgbb930ae"><span class="section-number-3">2.2</span> Conclusion</h3> <div class="outline-text-3" id="text-2-2"> <div class="important"> <p> The low frequency transfer function matrix from \(\mathcal{\bm{F}}\) to \(\mathcal{\bm{X}}\) corresponds to the compliance matrix of the Stewart platform. </p> </div> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2020-02-28 ven. 17:34</p> </div> </body> </html>