<?xml version="1.0" encoding="utf-8"?> <?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2020-02-11 mar. 15:26 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>Identification of the Stewart Platform using Simscape</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <style type="text/css"> <!--/*--><![CDATA[/*><!--*/ .title { text-align: center; margin-bottom: .2em; } .subtitle { text-align: center; font-size: medium; font-weight: bold; margin-top:0; } .todo { font-family: monospace; color: red; } .done { font-family: monospace; color: green; } .priority { font-family: monospace; color: orange; } .tag { background-color: #eee; font-family: monospace; padding: 2px; font-size: 80%; font-weight: normal; } .timestamp { color: #bebebe; } .timestamp-kwd { color: #5f9ea0; } .org-right { margin-left: auto; margin-right: 0px; text-align: right; } .org-left { margin-left: 0px; margin-right: auto; text-align: left; } .org-center { margin-left: auto; margin-right: auto; text-align: center; } .underline { text-decoration: underline; } #postamble p, #preamble p { font-size: 90%; margin: .2em; } p.verse { margin-left: 3%; } pre { border: 1px solid #ccc; box-shadow: 3px 3px 3px #eee; padding: 8pt; font-family: monospace; overflow: auto; margin: 1.2em; } pre.src { position: relative; overflow: visible; padding-top: 1.2em; } pre.src:before { display: none; position: absolute; background-color: white; top: -10px; right: 10px; padding: 3px; border: 1px solid black; } pre.src:hover:before { display: inline;} /* Languages per Org manual */ pre.src-asymptote:before { content: 'Asymptote'; } pre.src-awk:before { content: 'Awk'; } pre.src-C:before { content: 'C'; } /* pre.src-C++ doesn't work in CSS */ pre.src-clojure:before { content: 'Clojure'; } pre.src-css:before { content: 'CSS'; } pre.src-D:before { content: 'D'; } pre.src-ditaa:before { content: 'ditaa'; } pre.src-dot:before { content: 'Graphviz'; } pre.src-calc:before { content: 'Emacs Calc'; } pre.src-emacs-lisp:before { content: 'Emacs Lisp'; } pre.src-fortran:before { content: 'Fortran'; } pre.src-gnuplot:before { content: 'gnuplot'; } pre.src-haskell:before { content: 'Haskell'; } pre.src-hledger:before { content: 'hledger'; } pre.src-java:before { content: 'Java'; } pre.src-js:before { content: 'Javascript'; } pre.src-latex:before { content: 'LaTeX'; } pre.src-ledger:before { content: 'Ledger'; } pre.src-lisp:before { content: 'Lisp'; } pre.src-lilypond:before { content: 'Lilypond'; } pre.src-lua:before { content: 'Lua'; } pre.src-matlab:before { content: 'MATLAB'; } pre.src-mscgen:before { content: 'Mscgen'; } pre.src-ocaml:before { content: 'Objective Caml'; } pre.src-octave:before { content: 'Octave'; } pre.src-org:before { content: 'Org mode'; } pre.src-oz:before { content: 'OZ'; } pre.src-plantuml:before { content: 'Plantuml'; } pre.src-processing:before { content: 'Processing.js'; } pre.src-python:before { content: 'Python'; } pre.src-R:before { content: 'R'; } pre.src-ruby:before { content: 'Ruby'; } pre.src-sass:before { content: 'Sass'; } pre.src-scheme:before { content: 'Scheme'; } pre.src-screen:before { content: 'Gnu Screen'; } pre.src-sed:before { content: 'Sed'; } pre.src-sh:before { content: 'shell'; } pre.src-sql:before { content: 'SQL'; } pre.src-sqlite:before { content: 'SQLite'; } /* additional languages in org.el's org-babel-load-languages alist */ pre.src-forth:before { content: 'Forth'; } pre.src-io:before { content: 'IO'; } pre.src-J:before { content: 'J'; } pre.src-makefile:before { content: 'Makefile'; } pre.src-maxima:before { content: 'Maxima'; } pre.src-perl:before { content: 'Perl'; } pre.src-picolisp:before { content: 'Pico Lisp'; } pre.src-scala:before { content: 'Scala'; } pre.src-shell:before { content: 'Shell Script'; } pre.src-ebnf2ps:before { content: 'ebfn2ps'; } /* additional language identifiers per "defun org-babel-execute" in ob-*.el */ pre.src-cpp:before { content: 'C++'; } pre.src-abc:before { content: 'ABC'; } pre.src-coq:before { content: 'Coq'; } pre.src-groovy:before { content: 'Groovy'; } /* additional language identifiers from org-babel-shell-names in ob-shell.el: ob-shell is the only babel language using a lambda to put the execution function name together. */ pre.src-bash:before { content: 'bash'; } pre.src-csh:before { content: 'csh'; } pre.src-ash:before { content: 'ash'; } pre.src-dash:before { content: 'dash'; } pre.src-ksh:before { content: 'ksh'; } pre.src-mksh:before { content: 'mksh'; } pre.src-posh:before { content: 'posh'; } /* Additional Emacs modes also supported by the LaTeX listings package */ pre.src-ada:before { content: 'Ada'; } pre.src-asm:before { content: 'Assembler'; } pre.src-caml:before { content: 'Caml'; } pre.src-delphi:before { content: 'Delphi'; } pre.src-html:before { content: 'HTML'; } pre.src-idl:before { content: 'IDL'; } pre.src-mercury:before { content: 'Mercury'; } pre.src-metapost:before { content: 'MetaPost'; } pre.src-modula-2:before { content: 'Modula-2'; } pre.src-pascal:before { content: 'Pascal'; } pre.src-ps:before { content: 'PostScript'; } pre.src-prolog:before { content: 'Prolog'; } pre.src-simula:before { content: 'Simula'; } pre.src-tcl:before { content: 'tcl'; } pre.src-tex:before { content: 'TeX'; } pre.src-plain-tex:before { content: 'Plain TeX'; } pre.src-verilog:before { content: 'Verilog'; } pre.src-vhdl:before { content: 'VHDL'; } pre.src-xml:before { content: 'XML'; } pre.src-nxml:before { content: 'XML'; } /* add a generic configuration mode; LaTeX export needs an additional (add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */ pre.src-conf:before { content: 'Configuration File'; } table { border-collapse:collapse; } caption.t-above { caption-side: top; } caption.t-bottom { caption-side: bottom; } td, th { vertical-align:top; } th.org-right { text-align: center; } th.org-left { text-align: center; } th.org-center { text-align: center; } td.org-right { text-align: right; } td.org-left { text-align: left; } td.org-center { text-align: center; } dt { font-weight: bold; } .footpara { display: inline; } .footdef { margin-bottom: 1em; } .figure { padding: 1em; } .figure p { text-align: center; } .equation-container { display: table; text-align: center; width: 100%; } .equation { vertical-align: middle; } .equation-label { display: table-cell; text-align: right; vertical-align: middle; } .inlinetask { padding: 10px; border: 2px solid gray; margin: 10px; background: #ffffcc; } #org-div-home-and-up { text-align: right; font-size: 70%; white-space: nowrap; } textarea { overflow-x: auto; } .linenr { font-size: smaller } .code-highlighted { background-color: #ffff00; } .org-info-js_info-navigation { border-style: none; } #org-info-js_console-label { font-size: 10px; font-weight: bold; white-space: nowrap; } .org-info-js_search-highlight { background-color: #ffff00; color: #000000; font-weight: bold; } .org-svg { width: 90%; } /*]]>*/--> </style> <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/> <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/> <script src="./js/jquery.min.js"></script> <script src="./js/bootstrap.min.js"></script> <script src="./js/jquery.stickytableheaders.min.js"></script> <script src="./js/readtheorg.js"></script> <script type="text/javascript"> /* @licstart The following is the entire license notice for the JavaScript code in this tag. Copyright (C) 2012-2020 Free Software Foundation, Inc. The JavaScript code in this tag is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License (GNU GPL) as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The code is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU GPL for more details. As additional permission under GNU GPL version 3 section 7, you may distribute non-source (e.g., minimized or compacted) forms of that code without the copy of the GNU GPL normally required by section 4, provided you include this license notice and a URL through which recipients can access the Corresponding Source. @licend The above is the entire license notice for the JavaScript code in this tag. */ <!--/*--><![CDATA[/*><!--*/ function CodeHighlightOn(elem, id) { var target = document.getElementById(id); if(null != target) { elem.cacheClassElem = elem.className; elem.cacheClassTarget = target.className; target.className = "code-highlighted"; elem.className = "code-highlighted"; } } function CodeHighlightOff(elem, id) { var target = document.getElementById(id); if(elem.cacheClassElem) elem.className = elem.cacheClassElem; if(elem.cacheClassTarget) target.className = elem.cacheClassTarget; } /*]]>*///--> </script> <script> MathJax = { tex: { macros: { bm: ["\\boldsymbol{#1}",1], } } }; </script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="./index.html"> UP </a> | <a accesskey="H" href="./index.html"> HOME </a> </div><div id="content"> <h1 class="title">Identification of the Stewart Platform using Simscape</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#orgf65174f">Identification</a> <ul> <li><a href="#org5b89813">Simscape Model</a></li> <li><a href="#org2bfdf1b">Initialize the Stewart Platform</a></li> <li><a href="#org0d97b27">Identification</a></li> </ul> </li> <li><a href="#orge464de2">States as the motion of the mobile platform</a> <ul> <li><a href="#org987daca">Initialize the Stewart Platform</a></li> <li><a href="#orgc808316">Identification</a></li> <li><a href="#orge68adea">Coordinate transformation</a></li> <li><a href="#org4973ae1">Analysis</a></li> <li><a href="#orge7b97c8">Visualizing the modes</a></li> <li><a href="#org5d63457">Identification</a></li> <li><a href="#orgf7a52cb">Change of states</a></li> </ul> </li> <li><a href="#org23d7e7b">Simple Model without any sensor</a> <ul> <li><a href="#org69b8a98">Simscape Model</a></li> <li><a href="#org4aef27a">Initialize the Stewart Platform</a></li> <li><a href="#orgb9fd532">Identification</a></li> </ul> </li> <li><a href="#org0502cd2">Cartesian Plot</a></li> <li><a href="#org32e2eb3">From a force to force sensor</a></li> <li><a href="#org8ddfd2c">From a force applied in the leg to the displacement of the leg</a></li> <li><a href="#org5685537">Transmissibility</a></li> <li><a href="#org3335d1e">Compliance</a></li> <li><a href="#org5ca7af8">Inertial</a></li> </ul> </div> </div> <p> We would like to extract a state space model of the Stewart Platform from the Simscape model. </p> <p> The inputs are: </p> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-left" /> </colgroup> <thead> <tr> <th scope="col" class="org-left">Symbol</th> <th scope="col" class="org-left">Meaning</th> </tr> </thead> <tbody> <tr> <td class="org-left">\(\bm{\mathcal{F}}_{d}\)</td> <td class="org-left">External forces applied in {B}</td> </tr> <tr> <td class="org-left">\(\bm{\tau}\)</td> <td class="org-left">Joint forces</td> </tr> <tr> <td class="org-left">\(\bm{\mathcal{F}}\)</td> <td class="org-left">Cartesian forces applied by the Joints</td> </tr> <tr> <td class="org-left">\(\bm{D}_{w}\)</td> <td class="org-left">Fixed Based translation and rotations around {A}</td> </tr> </tbody> </table> <p> The outputs are: </p> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-left" /> <col class="org-left" /> </colgroup> <thead> <tr> <th scope="col" class="org-left">Symbol</th> <th scope="col" class="org-left">Meaning</th> </tr> </thead> <tbody> <tr> <td class="org-left">\(\bm{\mathcal{X}}\)</td> <td class="org-left">Relative Motion of {B} with respect to {A}</td> </tr> <tr> <td class="org-left">\(\bm{\mathcal{L}}\)</td> <td class="org-left">Joint Displacement</td> </tr> <tr> <td class="org-left">\(\bm{F}_{m}\)</td> <td class="org-left">Force Sensors in each strut</td> </tr> <tr> <td class="org-left">\(\bm{v}_{m}\)</td> <td class="org-left">Inertial Sensors located at \(b_i\) measuring in the direction of the strut</td> </tr> </tbody> </table> <blockquote> <p> An important difference from basic Simulink models is that the states in a physical network are not independent in general, because some states have dependencies on other states through constraints. </p> </blockquote> <div id="outline-container-orgf65174f" class="outline-2"> <h2 id="orgf65174f">Identification</h2> <div class="outline-text-2" id="text-orgf65174f"> </div> <div id="outline-container-org5b89813" class="outline-3"> <h3 id="org5b89813">Simscape Model</h3> </div> <div id="outline-container-org2bfdf1b" class="outline-3"> <h3 id="org2bfdf1b">Initialize the Stewart Platform</h3> <div class="outline-text-3" id="text-org2bfdf1b"> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); </pre> </div> </div> </div> <div id="outline-container-org0d97b27" class="outline-3"> <h3 id="org0d97b27">Identification</h3> <div class="outline-text-3" id="text-org0d97b27"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_identification'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/tau'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/Fext'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/X'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/Vm'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/Taum'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/Lm'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io, options); G.InputName = {<span class="org-string">'tau1'</span>, <span class="org-string">'tau2'</span>, <span class="org-string">'tau3'</span>, <span class="org-string">'tau4'</span>, <span class="org-string">'tau5'</span>, <span class="org-string">'tau6'</span>, ... <span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>}; G.OutputName = {<span class="org-string">'Xdx'</span>, <span class="org-string">'Xdy'</span>, <span class="org-string">'Xdz'</span>, <span class="org-string">'Xrx'</span>, <span class="org-string">'Xry'</span>, <span class="org-string">'Xrz'</span>, ... <span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>, ... <span class="org-string">'taum1'</span>, <span class="org-string">'taum2'</span>, <span class="org-string">'taum3'</span>, <span class="org-string">'taum4'</span>, <span class="org-string">'taum5'</span>, <span class="org-string">'taum6'</span>, ... <span class="org-string">'Lm1'</span>, <span class="org-string">'Lm2'</span>, <span class="org-string">'Lm3'</span>, <span class="org-string">'Lm4'</span>, <span class="org-string">'Lm5'</span>, <span class="org-string">'Lm6'</span>}; </pre> </div> </div> </div> </div> <div id="outline-container-orge464de2" class="outline-2"> <h2 id="orge464de2">States as the motion of the mobile platform</h2> <div class="outline-text-2" id="text-orge464de2"> </div> <div id="outline-container-org987daca" class="outline-3"> <h3 id="org987daca">Initialize the Stewart Platform</h3> <div class="outline-text-3" id="text-org987daca"> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); </pre> </div> </div> </div> <div id="outline-container-orgc808316" class="outline-3"> <h3 id="orgc808316">Identification</h3> <div class="outline-text-3" id="text-orgc808316"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_identification_simple'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/tau'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/X'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/Xdot'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io); <span class="org-comment">% G.InputName = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'};</span> <span class="org-comment">% G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'};</span> </pre> </div> <p> Let’s check the size of <code>G</code>: </p> <div class="org-src-container"> <pre class="src src-matlab">size(G) </pre> </div> <pre class="example"> size(G) State-space model with 12 outputs, 6 inputs, and 18 states. 'org_babel_eoe' ans = 'org_babel_eoe' </pre> <p> We expect to have only 12 states (corresponding to the 6dof of the mobile platform). </p> <div class="org-src-container"> <pre class="src src-matlab">Gm = minreal(G); </pre> </div> <pre class="example"> Gm = minreal(G); 6 states removed. </pre> <p> And indeed, we obtain 12 states. </p> </div> </div> <div id="outline-container-orge68adea" class="outline-3"> <h3 id="orge68adea">Coordinate transformation</h3> <div class="outline-text-3" id="text-orge68adea"> <p> We can perform the following transformation using the <code>ss2ss</code> command. </p> <div class="org-src-container"> <pre class="src src-matlab">Gt = ss2ss(Gm, Gm.C); </pre> </div> <p> Then, the <code>C</code> matrix of <code>Gt</code> is the unity matrix which means that the states of the state space model are equal to the measurements \(\bm{Y}\). </p> <p> The measurements are the 6 displacement and 6 velocities of mobile platform with respect to \(\{B\}\). </p> <p> We could perform the transformation by hand: </p> <div class="org-src-container"> <pre class="src src-matlab">At = Gm.C<span class="org-type">*</span>Gm.A<span class="org-type">*</span>pinv(Gm.C); Bt = Gm.C<span class="org-type">*</span>Gm.B; Ct = eye(12); Dt = zeros(12, 6); Gt = ss(At, Bt, Ct, Dt); </pre> </div> </div> </div> <div id="outline-container-org4973ae1" class="outline-3"> <h3 id="org4973ae1">Analysis</h3> <div class="outline-text-3" id="text-org4973ae1"> <div class="org-src-container"> <pre class="src src-matlab">[V,D] = eig(Gt.A); </pre> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <thead> <tr> <th scope="col" class="org-right">Mode Number</th> <th scope="col" class="org-right">Resonance Frequency [Hz]</th> <th scope="col" class="org-right">Damping Ratio [%]</th> </tr> </thead> <tbody> <tr> <td class="org-right">1.0</td> <td class="org-right">174.5</td> <td class="org-right">0.9</td> </tr> <tr> <td class="org-right">2.0</td> <td class="org-right">174.5</td> <td class="org-right">0.7</td> </tr> <tr> <td class="org-right">3.0</td> <td class="org-right">202.1</td> <td class="org-right">0.7</td> </tr> <tr> <td class="org-right">4.0</td> <td class="org-right">237.3</td> <td class="org-right">0.6</td> </tr> <tr> <td class="org-right">5.0</td> <td class="org-right">237.3</td> <td class="org-right">0.5</td> </tr> <tr> <td class="org-right">6.0</td> <td class="org-right">283.8</td> <td class="org-right">0.5</td> </tr> </tbody> </table> </div> </div> <div id="outline-container-orge7b97c8" class="outline-3"> <h3 id="orge7b97c8">Visualizing the modes</h3> <div class="outline-text-3" id="text-orge7b97c8"> <p> To visualize the i’th mode, we may excite the system using the inputs \(U_i\) such that \(B U_i\) is co-linear to \(\xi_i\) (the mode we want to excite). </p> <p> \[ U(t) = e^{\alpha t} ( ) \] </p> <p> Let’s first sort the modes and just take the modes corresponding to a eigenvalue with a positive imaginary part. </p> <div class="org-src-container"> <pre class="src src-matlab">ws = imag(diag(D)); [ws,I] = sort(ws) ws = ws(7<span class="org-type">:</span>end); I = I(7<span class="org-type">:</span>end); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(ws)</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">i_mode = I(<span class="org-constant">i</span>); <span class="org-comment">% the argument is the i'th mode</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">lambda_i = D(i_mode, i_mode); xi_i = V(<span class="org-type">:</span>,i_mode); a_i = real(lambda_i); b_i = imag(lambda_i); </pre> </div> <p> Let do 10 periods of the mode. </p> <div class="org-src-container"> <pre class="src src-matlab">t = linspace(0, 10<span class="org-type">/</span>(imag(lambda_i)<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span>), 1000); U_i = pinv(Gt.B) <span class="org-type">*</span> real(xi_i <span class="org-type">*</span> lambda_i <span class="org-type">*</span> (cos(b_i <span class="org-type">*</span> t) <span class="org-type">+</span> 1<span class="org-constant">i</span><span class="org-type">*</span>sin(b_i <span class="org-type">*</span> t))); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">U = timeseries(U_i, t); </pre> </div> <p> Simulation: </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'mat/conf_simscape.mat'</span>); <span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simscape</span>, <span class="org-string">'StopTime'</span>, num2str(t(<span class="org-variable-name">end</span>))); <span class="org-matlab-simulink-keyword">sim</span>(mdl); </pre> </div> <p> Save the movie of the mode shape. </p> <div class="org-src-container"> <pre class="src src-matlab">smwritevideo(mdl, sprintf(<span class="org-string">'figs/mode%i'</span>, <span class="org-constant">i</span>), ... <span class="org-string">'PlaybackSpeedRatio'</span>, 1<span class="org-type">/</span>(b_i<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span>), ... <span class="org-string">'FrameRate'</span>, 30, ... <span class="org-string">'FrameSize'</span>, [800, 400]); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">end</span> </pre> </div> <div id="orgb15855a" class="figure"> <p><img src="figs/mode1.gif" alt="mode1.gif" /> </p> <p><span class="figure-number">Figure 1: </span>Identified mode - 1</p> </div> <div id="org1816e59" class="figure"> <p><img src="figs/mode3.gif" alt="mode3.gif" /> </p> <p><span class="figure-number">Figure 2: </span>Identified mode - 3</p> </div> <div id="org01c8dca" class="figure"> <p><img src="figs/mode5.gif" alt="mode5.gif" /> </p> <p><span class="figure-number">Figure 3: </span>Identified mode - 5</p> </div> </div> </div> <div id="outline-container-org5d63457" class="outline-3"> <h3 id="org5d63457">Identification</h3> <div class="outline-text-3" id="text-org5d63457"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_identification'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/tau'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/Lm'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io, options); <span class="org-comment">% G.InputName = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'};</span> <span class="org-comment">% G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'};</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">size(G) </pre> </div> </div> </div> <div id="outline-container-orgf7a52cb" class="outline-3"> <h3 id="orgf7a52cb">Change of states</h3> <div class="outline-text-3" id="text-orgf7a52cb"> <div class="org-src-container"> <pre class="src src-matlab">At = G.C<span class="org-type">*</span>G.A<span class="org-type">*</span>pinv(G.C); Bt = G.C<span class="org-type">*</span>G.B; Ct = eye(12); Dt = zeros(12, 6); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">Gt = ss(At, Bt, Ct, Dt); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">size(Gt) </pre> </div> </div> </div> </div> <div id="outline-container-org23d7e7b" class="outline-2"> <h2 id="org23d7e7b">Simple Model without any sensor</h2> <div class="outline-text-2" id="text-org23d7e7b"> </div> <div id="outline-container-org69b8a98" class="outline-3"> <h3 id="org69b8a98">Simscape Model</h3> <div class="outline-text-3" id="text-org69b8a98"> <div class="org-src-container"> <pre class="src src-matlab">open <span class="org-string">'stewart_identification_simple.slx'</span> </pre> </div> </div> </div> <div id="outline-container-org4aef27a" class="outline-3"> <h3 id="org4aef27a">Initialize the Stewart Platform</h3> <div class="outline-text-3" id="text-org4aef27a"> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); </pre> </div> </div> </div> <div id="outline-container-orgb9fd532" class="outline-3"> <h3 id="orgb9fd532">Identification</h3> <div class="outline-text-3" id="text-orgb9fd532"> <div class="org-src-container"> <pre class="src src-matlab">stateorder = {... <span class="org-string">'stewart_platform_identification_simple/Solver Configuration/EVAL_KEY/INPUT_1_1_1'</span>,... <span class="org-string">'stewart_platform_identification_simple/Solver Configuration/EVAL_KEY/INPUT_2_1_1'</span>,... <span class="org-string">'stewart_platform_identification_simple/Solver Configuration/EVAL_KEY/INPUT_3_1_1'</span>,... <span class="org-string">'stewart_platform_identification_simple/Solver Configuration/EVAL_KEY/INPUT_4_1_1'</span>,... <span class="org-string">'stewart_platform_identification_simple/Solver Configuration/EVAL_KEY/INPUT_5_1_1'</span>,... <span class="org-string">'stewart_platform_identification_simple/Solver Configuration/EVAL_KEY/INPUT_6_1_1'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.cylindrical_joint.Rz.q'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_2.Subsystem.cylindrical_joint.Rz.q'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_3.Subsystem.cylindrical_joint.Rz.q'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_4.Subsystem.cylindrical_joint.Rz.q'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_5.Subsystem.cylindrical_joint.Rz.q'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_6.Subsystem.cylindrical_joint.Rz.q'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.cylindrical_joint.Pz.p'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_2.Subsystem.cylindrical_joint.Pz.p'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_3.Subsystem.cylindrical_joint.Pz.p'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_4.Subsystem.cylindrical_joint.Pz.p'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_5.Subsystem.cylindrical_joint.Pz.p'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_6.Subsystem.cylindrical_joint.Pz.p'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.cylindrical_joint.Rz.w'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_2.Subsystem.cylindrical_joint.Rz.w'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_3.Subsystem.cylindrical_joint.Rz.w'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_4.Subsystem.cylindrical_joint.Rz.w'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_5.Subsystem.cylindrical_joint.Rz.w'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_6.Subsystem.cylindrical_joint.Rz.w'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.cylindrical_joint.Pz.v'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_2.Subsystem.cylindrical_joint.Pz.v'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_3.Subsystem.cylindrical_joint.Pz.v'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_4.Subsystem.cylindrical_joint.Pz.v'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_5.Subsystem.cylindrical_joint.Pz.v'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_6.Subsystem.cylindrical_joint.Pz.v'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.spherical_joint_F.S.Q'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_2.Subsystem.spherical_joint_F.S.Q'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_3.Subsystem.spherical_joint_F.S.Q'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_4.Subsystem.spherical_joint_F.S.Q'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_5.Subsystem.spherical_joint_F.S.Q'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_6.Subsystem.spherical_joint_F.S.Q'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_2.Subsystem.spherical_joint_F.S.w'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_3.Subsystem.spherical_joint_F.S.w'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_4.Subsystem.spherical_joint_F.S.w'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_5.Subsystem.spherical_joint_F.S.w'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_6.Subsystem.spherical_joint_F.S.w'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.spherical_joint_F.S.w'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.spherical_joint_M.S.Q'</span>,... <span class="org-string">'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.spherical_joint_M.S.w'</span>}; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_identification_simple'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/tau'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/X'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/Xdot'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io, options); G.InputName = {<span class="org-string">'tau1'</span>, <span class="org-string">'tau2'</span>, <span class="org-string">'tau3'</span>, <span class="org-string">'tau4'</span>, <span class="org-string">'tau5'</span>, <span class="org-string">'tau6'</span>}; G.OutputName = {<span class="org-string">'Xdx'</span>, <span class="org-string">'Xdy'</span>, <span class="org-string">'Xdz'</span>, <span class="org-string">'Xrx'</span>, <span class="org-string">'Xry'</span>, <span class="org-string">'Xrz'</span>, <span class="org-string">'Vdx'</span>, <span class="org-string">'Vdy'</span>, <span class="org-string">'Vdz'</span>, <span class="org-string">'Vrx'</span>, <span class="org-string">'Vry'</span>, <span class="org-string">'Vrz'</span>}; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">size(G) </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">G.StateName </pre> </div> </div> </div> </div> <div id="outline-container-org0502cd2" class="outline-2"> <h2 id="org0502cd2">Cartesian Plot</h2> <div class="outline-text-2" id="text-org0502cd2"> <p> From a force applied in the Cartesian frame to a displacement in the Cartesian frame. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-type">figure</span>; hold on; plot(freqs, abs(squeeze(freqresp(G.G_cart(1, 1), freqs, <span class="org-string">'Hz'</span>)))); plot(freqs, abs(squeeze(freqresp(G.G_cart(2, 1), freqs, <span class="org-string">'Hz'</span>)))); plot(freqs, abs(squeeze(freqresp(G.G_cart(3, 1), freqs, <span class="org-string">'Hz'</span>)))); hold off; <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'Amplitude'</span>); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-type">figure</span>; bode(G.G_cart, freqs); </pre> </div> </div> </div> <div id="outline-container-org32e2eb3" class="outline-2"> <h2 id="org32e2eb3">From a force to force sensor</h2> <div class="outline-text-2" id="text-org32e2eb3"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-type">figure</span>; hold on; plot(freqs, abs(squeeze(freqresp(G.G_forc(1, 1), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>, <span class="org-string">'DisplayName'</span>, <span class="org-string">'$F_{m_i}/F_{i}$'</span>); hold off; <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'Amplitude [N/N]'</span>); legend(<span class="org-string">'location'</span>, <span class="org-string">'southeast'</span>); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-type">figure</span>; hold on; plot(freqs, abs(squeeze(freqresp(G.G_forc(1, 1), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>, <span class="org-string">'DisplayName'</span>, <span class="org-string">'$F_{m_i}/F_{i}$'</span>); plot(freqs, abs(squeeze(freqresp(G.G_forc(2, 1), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k--'</span>, <span class="org-string">'DisplayName'</span>, <span class="org-string">'$F_{m_j}/F_{i}$'</span>); plot(freqs, abs(squeeze(freqresp(G.G_forc(3, 1), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>); plot(freqs, abs(squeeze(freqresp(G.G_forc(4, 1), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>); plot(freqs, abs(squeeze(freqresp(G.G_forc(5, 1), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>); plot(freqs, abs(squeeze(freqresp(G.G_forc(6, 1), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>); hold off; <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'Amplitude [N/N]'</span>); legend(<span class="org-string">'location'</span>, <span class="org-string">'southeast'</span>); </pre> </div> </div> </div> <div id="outline-container-org8ddfd2c" class="outline-2"> <h2 id="org8ddfd2c">From a force applied in the leg to the displacement of the leg</h2> <div class="outline-text-2" id="text-org8ddfd2c"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-type">figure</span>; hold on; plot(freqs, abs(squeeze(freqresp(G.G_legs(1, 1), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>, <span class="org-string">'DisplayName'</span>, <span class="org-string">'$D_{i}/F_{i}$'</span>); hold off; <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'Amplitude [m/N]'</span>); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-type">figure</span>; hold on; plot(freqs, abs(squeeze(freqresp(G.G_legs(1, 1), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>, <span class="org-string">'DisplayName'</span>, <span class="org-string">'$D_{i}/F_{i}$'</span>); plot(freqs, abs(squeeze(freqresp(G.G_legs(2, 1), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k--'</span>, <span class="org-string">'DisplayName'</span>, <span class="org-string">'$D_{j}/F_{i}$'</span>); plot(freqs, abs(squeeze(freqresp(G.G_legs(3, 1), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>); plot(freqs, abs(squeeze(freqresp(G.G_legs(4, 1), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>); plot(freqs, abs(squeeze(freqresp(G.G_legs(5, 1), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>); plot(freqs, abs(squeeze(freqresp(G.G_legs(6, 1), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>); hold off; <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'Amplitude [m/N]'</span>); legend(<span class="org-string">'location'</span>, <span class="org-string">'northeast'</span>); </pre> </div> </div> </div> <div id="outline-container-org5685537" class="outline-2"> <h2 id="org5685537">Transmissibility</h2> <div class="outline-text-2" id="text-org5685537"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-type">figure</span>; hold on; plot(freqs, abs(squeeze(freqresp(G.G_tran(1, 1), freqs, <span class="org-string">'Hz'</span>)))); plot(freqs, abs(squeeze(freqresp(G.G_tran(2, 2), freqs, <span class="org-string">'Hz'</span>)))); plot(freqs, abs(squeeze(freqresp(G.G_tran(3, 3), freqs, <span class="org-string">'Hz'</span>)))); hold off; <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'Amplitude [m/m]'</span>); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-type">figure</span>; hold on; plot(freqs, abs(squeeze(freqresp(G.G_tran(4, 4), freqs, <span class="org-string">'Hz'</span>)))); plot(freqs, abs(squeeze(freqresp(G.G_tran(5, 5), freqs, <span class="org-string">'Hz'</span>)))); plot(freqs, abs(squeeze(freqresp(G.G_tran(6, 6), freqs, <span class="org-string">'Hz'</span>)))); hold off; <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'Amplitude [$\frac{rad/s}{rad/s}$]'</span>); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-type">figure</span>; hold on; plot(freqs, abs(squeeze(freqresp(G.G_tran(1, 1), freqs, <span class="org-string">'Hz'</span>)))); plot(freqs, abs(squeeze(freqresp(G.G_tran(1, 2), freqs, <span class="org-string">'Hz'</span>)))); plot(freqs, abs(squeeze(freqresp(G.G_tran(1, 3), freqs, <span class="org-string">'Hz'</span>)))); hold off; <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'Amplitude [m/m]'</span>); </pre> </div> </div> </div> <div id="outline-container-org3335d1e" class="outline-2"> <h2 id="org3335d1e">Compliance</h2> <div class="outline-text-2" id="text-org3335d1e"> <p> From a force applied in the Cartesian frame to a relative displacement of the mobile platform with respect to the base. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-type">figure</span>; hold on; plot(freqs, abs(squeeze(freqresp(G.G_comp(1, 1), freqs, <span class="org-string">'Hz'</span>)))); plot(freqs, abs(squeeze(freqresp(G.G_comp(2, 2), freqs, <span class="org-string">'Hz'</span>)))); plot(freqs, abs(squeeze(freqresp(G.G_comp(3, 3), freqs, <span class="org-string">'Hz'</span>)))); hold off; <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'Amplitude [m/N]'</span>); </pre> </div> </div> </div> <div id="outline-container-org5ca7af8" class="outline-2"> <h2 id="org5ca7af8">Inertial</h2> <div class="outline-text-2" id="text-org5ca7af8"> <p> From a force applied on the Cartesian frame to the absolute displacement of the mobile platform. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-type">figure</span>; hold on; plot(freqs, abs(squeeze(freqresp(G.G_iner(1, 1), freqs, <span class="org-string">'Hz'</span>)))); plot(freqs, abs(squeeze(freqresp(G.G_iner(2, 2), freqs, <span class="org-string">'Hz'</span>)))); plot(freqs, abs(squeeze(freqresp(G.G_iner(3, 3), freqs, <span class="org-string">'Hz'</span>)))); hold off; <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'Amplitude [m/N]'</span>); </pre> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2020-02-11 mar. 15:26</p> </div> </body> </html>