deg2rad = pi/180; x_axis = [1 0 0]; y_axis = [0 1 0]; z_axis = [0 0 1]; % Connection points on base and top plate w.r.t. World frame at the center % of the base plate pos_base = []; pos_top = []; alpha_b = 90*deg2rad; % angle de décalage par rapport à 120 deg (pour positionner les supports bases) alpha_t = -30*deg2rad; % +- offset angle from 120 degree spacing on top height = 0.10; % 2 meter height in home configuration radius_b = 0.130; % rayon emplacement support base radius_t = 0.100; % top radius in meters for i = 1:3, % base points angle_m_b = (2*pi/3)* (i-1) - alpha_b; angle_p_b = (2*pi/3)* (i-1) + alpha_b; pos_base(2*i-1,:) = [radius_b*cos(angle_m_b), radius_b*sin(angle_m_b), 0.0]; pos_base(2*i,:) = [radius_b*cos(angle_p_b), radius_b*sin(angle_p_b), 0.0]; % top points % Top points are 60 degrees offset angle_m_t = (2*pi/3)* (i-1) - alpha_t + 2*pi/6; angle_p_t = (2*pi/3)* (i-1) + alpha_t + 2*pi/6; pos_top(2*i-1,:) = [radius_t*cos(angle_m_t), radius_t*sin(angle_m_t), height]; pos_top(2*i,:) = [radius_t*cos(angle_p_t), radius_t*sin(angle_p_t), height]; end % permute pos_top points so that legs are end points of base and top points pos_top = [pos_top(6,:); pos_top(1:5,:)]; %6th point on top connects to 1st on bottom pos_top_tranform = pos_top - height*[zeros(6, 2),ones(6, 1)]; % Compute points w.r.t. to the body frame in a 3x6 matrix body_pts = pos_top' - height*[zeros(2,6);ones(1,6)]; % leg vectors legs = pos_top - pos_base; leg_length = [ ]; leg_vectors = [ ]; for i = 1:6, leg_length(i) = norm(legs(i,:)); leg_vectors(i,:) = legs(i,:) / leg_length(i); end % Calculate revolute and cylindrical axes for i = 1:6, rev1(i,:) = cross(leg_vectors(i,:), z_axis); rev1(i,:) = rev1(i,:) / norm(rev1(i,:)); rev2(i,:) = - cross(rev1(i,:), leg_vectors(i,:)); rev2(i,:) = rev2(i,:) / norm(rev2(i,:)); cyl1(i,:) = leg_vectors(i,:); rev3(i,:) = rev1(i,:); rev4(i,:) = rev2(i,:); end % Coordinate systems lower_leg = struct('origin', [0 0 0], 'rotation', eye(3), 'end_point', [0 0 0]); upper_leg = struct('origin', [0 0 0], 'rotation', eye(3), 'end_point', [0 0 0]); for i = 1:6, lower_leg(i).origin = pos_base(i,:) + (3/8)*legs(i,:); lower_leg(i).end_point = pos_base(i,:) + (3/4)*legs(i,:); lower_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)']; upper_leg(i).origin = pos_base(i,:) + (1-3/8)*legs(i,:); upper_leg(i).end_point = pos_base(i,:) + (1/4)*legs(i,:); upper_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)']; end % Inertia and mass calculation top_thickness = 0.05; base_thickness = 0.05; inner_radius = 0.03; outer_radius = 0.05; density = 76e3/9.81; % steel density in Kg/m^3 %leg inertia and mass [lower_leg_mass, lower_leg_inertia] = inertiaCylinder(density, ... 0.75*leg_length(1),outer_radius, inner_radius); [upper_leg_mass, upper_leg_inertia] = inertiaCylinder(density, ... 0.75*leg_length(1),inner_radius, 0); % top and base plate mass and inertia [top_mass, top_inertia] = inertiaCylinder(density, ... top_thickness, radius_t, 0); [base_mass, base_inertia] = inertiaCylinder(density, ... base_thickness,radius_b, 0); % PID controller gains Kp = 2e6; Ki = 1e4; Kd = 4.5e4;