%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); simulinkproject('../'); open('stewart_platform_model.slx') % Identification of the Dynamics stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, 'type', 'accelerometer', 'freq', 5e3); ground = initializeGround('type', 'none'); payload = initializePayload('type', 'none'); %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Vm'); io_i = io_i + 1; % Absolute velocity of each leg [m/s] %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'}; % The transfer function from actuator forces to force sensors is shown in Figure [[fig:inertial_plant_coupling]]. freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 2:6 set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(G(['Vm', num2str(i)], 'F1'), freqs, 'Hz')))); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G('Vm1', 'F1'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 2:6 set(gca,'ColorOrderIndex',2); p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Vm', num2str(i)], 'F1'), freqs, 'Hz')))); end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Vm1', 'F1'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2], {'$F_{m,i}/F_i$', '$F_{m,j}/F_i$'}) linkaxes([ax1,ax2],'x'); % Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics % We add some stiffness and damping in the flexible joints and we re-identify the dynamics. stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); Gf = linearize(mdl, io, options); Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; Gf.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'}; % We now use the amplified actuators and re-identify the dynamics stewart = initializeAmplifiedStrutDynamics(stewart); Ga = linearize(mdl, io, options); Ga.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; Ga.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'}; % The new dynamics from force actuator to force sensor is shown in Figure [[fig:inertial_plant_flexible_joint_decentralized]]. freqs = logspace(1, 4, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Vm1', 'F1'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gf('Vm1', 'F1'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Ga('Vm1', 'F1'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Vm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints'); plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Vm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints'); plot(freqs, 180/pi*angle(squeeze(freqresp(Ga('Vm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Amplified Actuator'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'southwest') linkaxes([ax1,ax2],'x'); % Obtained Damping % The control is a performed in a decentralized manner. % The $6 \times 6$ control is a diagonal matrix with pure proportional action on the diagonal: % \[ K(s) = g % \begin{bmatrix} % 1 & & 0 \\ % & \ddots & \\ % 0 & & 1 % \end{bmatrix} \] % The root locus is shown in figure [[fig:root_locus_inertial_rot_stiffness]]. gains = logspace(2, 5, 100); figure; hold on; plot(real(pole(G)), imag(pole(G)), 'x'); plot(real(pole(Gf)), imag(pole(Gf)), 'x'); plot(real(pole(Ga)), imag(pole(Ga)), 'x'); set(gca,'ColorOrderIndex',1); plot(real(tzero(G)), imag(tzero(G)), 'o'); plot(real(tzero(Gf)), imag(tzero(Gf)), 'o'); plot(real(tzero(Ga)), imag(tzero(Ga)), 'o'); for i = 1:length(gains) set(gca,'ColorOrderIndex',1); cl_poles = pole(feedback(G, gains(i)*eye(6))); p1 = plot(real(cl_poles), imag(cl_poles), '.'); set(gca,'ColorOrderIndex',2); cl_poles = pole(feedback(Gf, gains(i)*eye(6))); p2 = plot(real(cl_poles), imag(cl_poles), '.'); set(gca,'ColorOrderIndex',3); cl_poles = pole(feedback(Ga, gains(i)*eye(6))); p3 = plot(real(cl_poles), imag(cl_poles), '.'); end ylim([0, 3*max(imag(pole(G)))]); xlim([-3*max(imag(pole(G))),0]); xlabel('Real Part') ylabel('Imaginary Part') axis square legend([p1, p2, p3], {'Perfect Joints', 'Flexible Joints', 'Amplified Actuator'}, 'location', 'northwest');