%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); simulinkproject('../'); % Coupling between the actuators and sensors - Cubic Architecture % Let's generate a Cubic architecture where the cube's center and the frames $\{A\}$ and $\{B\}$ are coincident. H = 200e-3; % height of the Stewart platform [m] MO_B = -10e-3; % Position {B} with respect to {M} [m] Hc = 2.5*H; % Size of the useful part of the cube [m] FOc = H + MO_B; % Center of the cube with respect to {F} stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B); stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 25e-3, 'MHb', 25e-3); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart, 'K', 1e6*ones(6,1), 'C', 1e1*ones(6,1)); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.2*max(vecnorm(stewart.platform_F.Fa)), ... 'Mpm', 10, ... 'Mph', 20e-3, ... 'Mpr', 1.2*max(vecnorm(stewart.platform_M.Mb))); stewart = initializeCylindricalStruts(stewart, 'Fsm', 1e-3, 'Msm', 1e-3); stewart = initializeInertialSensor(stewart); % No flexibility below the Stewart platform and no payload. ground = initializeGround('type', 'none'); payload = initializePayload('type', 'none'); displayArchitecture(stewart, 'labels', false, 'view', 'all'); % #+name: fig:stewart_architecture_coupling_struts_cubic % #+caption: Geometry of the generated Stewart platform ([[./figs/stewart_architecture_coupling_struts_cubic.png][png]], [[./figs/stewart_architecture_coupling_struts_cubic.pdf][pdf]]) % [[file:figs/stewart_architecture_coupling_struts_cubic.png]] % And we identify the dynamics from the actuator forces $\tau_{i}$ to the relative motion sensors $\delta \mathcal{L}_{i}$ (Figure [[fig:coupling_struts_relative_sensor_cubic]]) and to the force sensors $\tau_{m,i}$ (Figure [[fig:coupling_struts_force_sensor_cubic]]). open('stewart_platform_model.slx') %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m] %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'}; freqs = logspace(1, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax3 = subplot(2, 1, 2); hold on; for i = 1:6 for j = i+1:6 p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2], {'$L_i/\tau_i$', '$L_i/\tau_j$'}) linkaxes([ax1,ax2],'x'); % #+name: fig:coupling_struts_relative_sensor_cubic % #+caption: Dynamics from the force actuators to the relative motion sensors ([[./figs/coupling_struts_relative_sensor_cubic.png][png]], [[./figs/coupling_struts_relative_sensor_cubic.pdf][pdf]]) % [[file:figs/coupling_struts_relative_sensor_cubic.png]] %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensor Outputs [N] %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'}; freqs = logspace(1, 3, 500); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ax3 = subplot(2, 1, 2); hold on; for i = 1:6 for j = i+1:6 p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2], {'$F_{m,i}/\tau_i$', '$F_{m,i}/\tau_j$'}) linkaxes([ax1,ax2],'x'); % Coupling between the actuators and sensors - Non-Cubic Architecture % Now we generate a Stewart platform which is not cubic but with approximately the same size as the previous cubic architecture. H = 200e-3; % height of the Stewart platform [m] MO_B = -10e-3; % Position {B} with respect to {M} [m] stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B); stewart = generateGeneralConfiguration(stewart, 'FR', 250e-3, 'MR', 150e-3); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart, 'K', 1e6*ones(6,1), 'C', 1e1*ones(6,1)); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.2*max(vecnorm(stewart.platform_F.Fa)), ... 'Mpm', 10, ... 'Mph', 20e-3, ... 'Mpr', 1.2*max(vecnorm(stewart.platform_M.Mb))); stewart = initializeCylindricalStruts(stewart, 'Fsm', 1e-3, 'Msm', 1e-3); stewart = initializeInertialSensor(stewart); % No flexibility below the Stewart platform and no payload. ground = initializeGround('type', 'none'); payload = initializePayload('type', 'none'); displayArchitecture(stewart, 'labels', false, 'view', 'all'); % #+name: fig:stewart_architecture_coupling_struts_non_cubic % #+caption: Geometry of the generated Stewart platform ([[./figs/stewart_architecture_coupling_struts_non_cubic.png][png]], [[./figs/stewart_architecture_coupling_struts_non_cubic.pdf][pdf]]) % [[file:figs/stewart_architecture_coupling_struts_non_cubic.png]] % And we identify the dynamics from the actuator forces $\tau_{i}$ to the relative motion sensors $\delta \mathcal{L}_{i}$ (Figure [[fig:coupling_struts_relative_sensor_non_cubic]]) and to the force sensors $\tau_{m,i}$ (Figure [[fig:coupling_struts_force_sensor_non_cubic]]). open('stewart_platform_model.slx') %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m] %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'}; freqs = logspace(1, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax3 = subplot(2, 1, 2); hold on; for i = 1:6 for j = i+1:6 p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2], {'$L_i/\tau_i$', '$L_i/\tau_j$'}) linkaxes([ax1,ax2],'x'); % #+name: fig:coupling_struts_relative_sensor_non_cubic % #+caption: Dynamics from the force actuators to the relative motion sensors ([[./figs/coupling_struts_relative_sensor_non_cubic.png][png]], [[./figs/coupling_struts_relative_sensor_non_cubic.pdf][pdf]]) % [[file:figs/coupling_struts_relative_sensor_non_cubic.png]] %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensor Outputs [N] %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'}; freqs = logspace(1, 3, 500); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ax3 = subplot(2, 1, 2); hold on; for i = 1:6 for j = i+1:6 p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2], {'$F_{m,i}/\tau_i$', '$F_{m,i}/\tau_j$'}) linkaxes([ax1,ax2],'x');