#+TITLE: Stewart Platform - Static Analysis :DRAWER: #+HTML_LINK_HOME: ./index.html #+HTML_LINK_UP: ./index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results raw replace :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports both #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs :END: * Coupling What causes the coupling from $F_i$ to $X_i$ ? #+begin_src latex :file coupling.pdf :post pdf2svg(file=*this*, ext="png") :exports both \begin{tikzpicture} \node[block] (Jt) at (0, 0) {$J^{-T}$}; \node[block, right= of Jt] (G) {$G$}; \node[block, right= of G] (J) {$J^{-1}$}; \draw[->] ($(Jt.west)+(-0.8, 0)$) -- (Jt.west) node[above left]{$F_i$}; \draw[->] (Jt.east) -- (G.west) node[above left]{$\tau_i$}; \draw[->] (G.east) -- (J.west) node[above left]{$q_i$}; \draw[->] (J.east) -- ++(0.8, 0) node[above left]{$X_i$}; \end{tikzpicture} #+end_src #+name: fig:block_diag_coupling #+caption: Block diagram to control an hexapod #+RESULTS: [[file:figs/coupling.png]] There is no coupling from $F_i$ to $X_j$ if $J^{-1} G J^{-T}$ is diagonal. If $G$ is diagonal (cubic configuration), then $J^{-1} G J^{-T} = G J^{-1} J^{-T} = G (J^{T} J)^{-1} = G K^{-1}$ Thus, the system is uncoupled if $G$ and $K$ are diagonal.