UP | HOME

Stewart Platform - Control Study

Table of Contents

1 First Control Architecture

1.1 Control Schematic

control_measure_rotating_2dof.png

1.2 Initialize the Stewart platform

stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);

1.3 Identification of the plant

Let’s identify the transfer function from \(\bm{\tau}}\) to \(\bm{L}\).

%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;

%% Name of the Simulink File
mdl = 'stewart_platform_control';

%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/tau'], 1, 'openinput');  io_i = io_i + 1;
io(io_i) = linio([mdl, '/L'], 1, 'openoutput'); io_i = io_i + 1;

%% Run the linearization
G = linearize(mdl, io, options);
G.InputName  = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'L1', 'L2', 'L3', 'L4', 'L5', 'L6'};

1.4 Plant Analysis

Diagonal terms Compare to off-diagonal terms

1.5 Controller Design

One integrator should be present in the controller.

A lead is added around the crossover frequency which is set to be around 500Hz.

% wint = 2*pi*100; % Integrate until [rad]
% wlead = 2*pi*500; % Location of the lead [rad]
% hlead = 2; % Lead strengh

% Kl = 1e6 * ... % Gain
%      (s + wint)/(s) * ... % Integrator until 100Hz
%      (1 + s/(wlead/hlead)/(1 + s/(wlead*hlead))); % Lead

wc = 2*pi*100;
Kl = 1/abs(freqresp(G(1,1), wc)) * wc/s * 1/(1 + s/(3*wc));
Kl = Kl * eye(6);

Author: Dehaeze Thomas

Created: 2020-02-11 mar. 15:50