<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2019-08-26 lun. 11:56 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>Stewart Platform - Simscape Model</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Thomas Dehaeze" /> <style type="text/css"> <!--/*--><![CDATA[/*><!--*/ .title { text-align: center; margin-bottom: .2em; } .subtitle { text-align: center; font-size: medium; font-weight: bold; margin-top:0; } .todo { font-family: monospace; color: red; } .done { font-family: monospace; color: green; } .priority { font-family: monospace; color: orange; } .tag { background-color: #eee; font-family: monospace; padding: 2px; font-size: 80%; font-weight: normal; } .timestamp { color: #bebebe; } .timestamp-kwd { color: #5f9ea0; } .org-right { margin-left: auto; margin-right: 0px; text-align: right; } .org-left { margin-left: 0px; margin-right: auto; text-align: left; } .org-center { margin-left: auto; margin-right: auto; text-align: center; } .underline { text-decoration: underline; } #postamble p, #preamble p { font-size: 90%; margin: .2em; } p.verse { margin-left: 3%; } pre { border: 1px solid #ccc; box-shadow: 3px 3px 3px #eee; padding: 8pt; font-family: monospace; overflow: auto; margin: 1.2em; } pre.src { position: relative; overflow: visible; padding-top: 1.2em; } pre.src:before { display: none; position: absolute; background-color: white; top: -10px; right: 10px; padding: 3px; border: 1px solid black; } pre.src:hover:before { display: inline;} /* Languages per Org manual */ pre.src-asymptote:before { content: 'Asymptote'; } pre.src-awk:before { content: 'Awk'; } pre.src-C:before { content: 'C'; } /* pre.src-C++ doesn't work in CSS */ pre.src-clojure:before { content: 'Clojure'; } pre.src-css:before { content: 'CSS'; } pre.src-D:before { content: 'D'; } pre.src-ditaa:before { content: 'ditaa'; } pre.src-dot:before { content: 'Graphviz'; } pre.src-calc:before { content: 'Emacs Calc'; } pre.src-emacs-lisp:before { content: 'Emacs Lisp'; } pre.src-fortran:before { content: 'Fortran'; } pre.src-gnuplot:before { content: 'gnuplot'; } pre.src-haskell:before { content: 'Haskell'; } pre.src-hledger:before { content: 'hledger'; } pre.src-java:before { content: 'Java'; } pre.src-js:before { content: 'Javascript'; } pre.src-latex:before { content: 'LaTeX'; } pre.src-ledger:before { content: 'Ledger'; } pre.src-lisp:before { content: 'Lisp'; } pre.src-lilypond:before { content: 'Lilypond'; } pre.src-lua:before { content: 'Lua'; } pre.src-matlab:before { content: 'MATLAB'; } pre.src-mscgen:before { content: 'Mscgen'; } pre.src-ocaml:before { content: 'Objective Caml'; } pre.src-octave:before { content: 'Octave'; } pre.src-org:before { content: 'Org mode'; } pre.src-oz:before { content: 'OZ'; } pre.src-plantuml:before { content: 'Plantuml'; } pre.src-processing:before { content: 'Processing.js'; } pre.src-python:before { content: 'Python'; } pre.src-R:before { content: 'R'; } pre.src-ruby:before { content: 'Ruby'; } pre.src-sass:before { content: 'Sass'; } pre.src-scheme:before { content: 'Scheme'; } pre.src-screen:before { content: 'Gnu Screen'; } pre.src-sed:before { content: 'Sed'; } pre.src-sh:before { content: 'shell'; } pre.src-sql:before { content: 'SQL'; } pre.src-sqlite:before { content: 'SQLite'; } /* additional languages in org.el's org-babel-load-languages alist */ pre.src-forth:before { content: 'Forth'; } pre.src-io:before { content: 'IO'; } pre.src-J:before { content: 'J'; } pre.src-makefile:before { content: 'Makefile'; } pre.src-maxima:before { content: 'Maxima'; } pre.src-perl:before { content: 'Perl'; } pre.src-picolisp:before { content: 'Pico Lisp'; } pre.src-scala:before { content: 'Scala'; } pre.src-shell:before { content: 'Shell Script'; } pre.src-ebnf2ps:before { content: 'ebfn2ps'; } /* additional language identifiers per "defun org-babel-execute" in ob-*.el */ pre.src-cpp:before { content: 'C++'; } pre.src-abc:before { content: 'ABC'; } pre.src-coq:before { content: 'Coq'; } pre.src-groovy:before { content: 'Groovy'; } /* additional language identifiers from org-babel-shell-names in ob-shell.el: ob-shell is the only babel language using a lambda to put the execution function name together. */ pre.src-bash:before { content: 'bash'; } pre.src-csh:before { content: 'csh'; } pre.src-ash:before { content: 'ash'; } pre.src-dash:before { content: 'dash'; } pre.src-ksh:before { content: 'ksh'; } pre.src-mksh:before { content: 'mksh'; } pre.src-posh:before { content: 'posh'; } /* Additional Emacs modes also supported by the LaTeX listings package */ pre.src-ada:before { content: 'Ada'; } pre.src-asm:before { content: 'Assembler'; } pre.src-caml:before { content: 'Caml'; } pre.src-delphi:before { content: 'Delphi'; } pre.src-html:before { content: 'HTML'; } pre.src-idl:before { content: 'IDL'; } pre.src-mercury:before { content: 'Mercury'; } pre.src-metapost:before { content: 'MetaPost'; } pre.src-modula-2:before { content: 'Modula-2'; } pre.src-pascal:before { content: 'Pascal'; } pre.src-ps:before { content: 'PostScript'; } pre.src-prolog:before { content: 'Prolog'; } pre.src-simula:before { content: 'Simula'; } pre.src-tcl:before { content: 'tcl'; } pre.src-tex:before { content: 'TeX'; } pre.src-plain-tex:before { content: 'Plain TeX'; } pre.src-verilog:before { content: 'Verilog'; } pre.src-vhdl:before { content: 'VHDL'; } pre.src-xml:before { content: 'XML'; } pre.src-nxml:before { content: 'XML'; } /* add a generic configuration mode; LaTeX export needs an additional (add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */ pre.src-conf:before { content: 'Configuration File'; } table { border-collapse:collapse; } caption.t-above { caption-side: top; } caption.t-bottom { caption-side: bottom; } td, th { vertical-align:top; } th.org-right { text-align: center; } th.org-left { text-align: center; } th.org-center { text-align: center; } td.org-right { text-align: right; } td.org-left { text-align: left; } td.org-center { text-align: center; } dt { font-weight: bold; } .footpara { display: inline; } .footdef { margin-bottom: 1em; } .figure { padding: 1em; } .figure p { text-align: center; } .equation-container { display: table; text-align: center; width: 100%; } .equation { vertical-align: middle; } .equation-label { display: table-cell; text-align: right; vertical-align: middle; } .inlinetask { padding: 10px; border: 2px solid gray; margin: 10px; background: #ffffcc; } #org-div-home-and-up { text-align: right; font-size: 70%; white-space: nowrap; } textarea { overflow-x: auto; } .linenr { font-size: smaller } .code-highlighted { background-color: #ffff00; } .org-info-js_info-navigation { border-style: none; } #org-info-js_console-label { font-size: 10px; font-weight: bold; white-space: nowrap; } .org-info-js_search-highlight { background-color: #ffff00; color: #000000; font-weight: bold; } .org-svg { width: 90%; } /*]]>*/--> </style> <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/> <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/> <script src="./js/jquery.min.js"></script> <script src="./js/bootstrap.min.js"></script> <script src="./js/jquery.stickytableheaders.min.js"></script> <script src="./js/readtheorg.js"></script> <script type="text/javascript"> /* @licstart The following is the entire license notice for the JavaScript code in this tag. Copyright (C) 2012-2019 Free Software Foundation, Inc. The JavaScript code in this tag is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License (GNU GPL) as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The code is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU GPL for more details. As additional permission under GNU GPL version 3 section 7, you may distribute non-source (e.g., minimized or compacted) forms of that code without the copy of the GNU GPL normally required by section 4, provided you include this license notice and a URL through which recipients can access the Corresponding Source. @licend The above is the entire license notice for the JavaScript code in this tag. */ <!--/*--><![CDATA[/*><!--*/ function CodeHighlightOn(elem, id) { var target = document.getElementById(id); if(null != target) { elem.cacheClassElem = elem.className; elem.cacheClassTarget = target.className; target.className = "code-highlighted"; elem.className = "code-highlighted"; } } function CodeHighlightOff(elem, id) { var target = document.getElementById(id); if(elem.cacheClassElem) elem.className = elem.cacheClassElem; if(elem.cacheClassTarget) target.className = elem.cacheClassTarget; } /*]]>*///--> </script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ displayAlign: "center", displayIndent: "0em", "HTML-CSS": { scale: 100, linebreaks: { automatic: "false" }, webFont: "TeX" }, SVG: {scale: 100, linebreaks: { automatic: "false" }, font: "TeX"}, NativeMML: {scale: 100}, TeX: { equationNumbers: {autoNumber: "AMS"}, MultLineWidth: "85%", TagSide: "right", TagIndent: ".8em" } }); </script> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="./index.html"> UP </a> | <a accesskey="H" href="./index.html"> HOME </a> </div><div id="content"> <h1 class="title">Stewart Platform - Simscape Model</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#orge1bdaa4">1. initializeGeneralConfiguration</a> <ul> <li><a href="#orgb189499">1.1. Function description</a></li> <li><a href="#org26f683d">1.2. Optional Parameters</a></li> <li><a href="#org22df53a">1.3. Geometry Description</a></li> <li><a href="#orgcf32e31">1.4. Compute Aa and Ab</a></li> <li><a href="#org4931162">1.5. Returns Stewart Structure</a></li> </ul> </li> <li><a href="#orgc4f14da">2. computeGeometricalProperties</a> <ul> <li><a href="#org7550562">2.1. Function description</a></li> <li><a href="#org0ec8d5e">2.2. Optional Parameters</a></li> <li><a href="#orgdc858fe">2.3. Rotation matrices</a></li> <li><a href="#orgc0b0116">2.4. Jacobian matrices</a></li> </ul> </li> <li><a href="#org35cb27a">3. initializeMechanicalElements</a> <ul> <li><a href="#orgeeb3d2f">3.1. Function description</a></li> <li><a href="#org02f8d24">3.2. Optional Parameters</a></li> <li><a href="#orga56f635">3.3. Bottom Plate</a></li> <li><a href="#orge8a195c">3.4. Top Plate</a></li> <li><a href="#org8725a51">3.5. Legs</a></li> <li><a href="#org722b78f">3.6. Ball Joints</a></li> </ul> </li> <li><a href="#org5ba95d3">4. initializeSample</a> <ul> <li><a href="#org2dd34bb">4.1. Function description</a></li> <li><a href="#org2aa1dac">4.2. Optional Parameters</a></li> <li><a href="#orgea68e95">4.3. Save the Sample structure</a></li> </ul> </li> </ul> </div> </div> <p> Stewart platforms are generated in multiple steps. </p> <p> First, geometrical parameters are defined: </p> <ul class="org-ul"> <li>\({}^Aa_i\) - Position of the joints fixed to the fixed base w.r.t \(\{A\}\)</li> <li>\({}^Ab_i\) - Position of the joints fixed to the mobile platform w.r.t \(\{A\}\)</li> <li>\({}^Bb_i\) - Position of the joints fixed to the mobile platform w.r.t \(\{B\}\)</li> <li>\(H\) - Total height of the mobile platform</li> </ul> <p> These parameter are enough to determine all the kinematic properties of the platform like the Jacobian, stroke, stiffness, … These geometrical parameters can be generated using different functions: <code>initializeCubicConfiguration</code> for cubic configuration or <code>initializeGeneralConfiguration</code> for more general configuration. </p> <p> A function <code>computeGeometricalProperties</code> is then used to compute: </p> <ul class="org-ul"> <li>\(J_f\) - Jacobian matrix for the force location</li> <li>\(J_d\) - Jacobian matrix for displacement estimation</li> <li>\(R_m\) - Rotation matrices to position the leg vectors</li> </ul> <p> Then, geometrical parameters are computed for all the mechanical elements with the function <code>initializeMechanicalElements</code>: </p> <ul class="org-ul"> <li>Shape of the platforms <ul class="org-ul"> <li>External Radius</li> <li>Internal Radius</li> <li>Density</li> <li>Thickness</li> </ul></li> <li>Shape of the Legs <ul class="org-ul"> <li>Radius</li> <li>Size of ball joint</li> <li>Density</li> </ul></li> </ul> <p> Other Parameters are defined for the Simscape simulation: </p> <ul class="org-ul"> <li>Sample mass, volume and position (<code>initializeSample</code> function)</li> <li>Location of the inertial sensor</li> <li>Location of the point for the differential measurements</li> <li>Location of the Jacobian point for velocity/displacement computation</li> </ul> <div id="outline-container-orge1bdaa4" class="outline-2"> <h2 id="orge1bdaa4"><span class="section-number-2">1</span> initializeGeneralConfiguration</h2> <div class="outline-text-2" id="text-1"> </div> <div id="outline-container-orgb189499" class="outline-3"> <h3 id="orgb189499"><span class="section-number-3">1.1</span> Function description</h3> <div class="outline-text-3" id="text-1-1"> <p> The <code>initializeGeneralConfiguration</code> function takes one structure that contains configurations for the hexapod and returns one structure representing the Hexapod. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">[</span></span><span class="org-variable-name">stewart</span><span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">]</span></span> = <span class="org-function-name">initializeGeneralConfiguration</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">opts_param</span><span class="org-rainbow-delimiters-depth-1">)</span> </pre> </div> </div> </div> <div id="outline-container-org26f683d" class="outline-3"> <h3 id="org26f683d"><span class="section-number-3">1.2</span> Optional Parameters</h3> <div class="outline-text-3" id="text-1-2"> <p> Default values for opts. </p> <div class="org-src-container"> <pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span> <span class="org-string">'H_tot'</span>, <span class="org-highlight-numbers-number">90</span>, <span class="org-underline">...</span> <span class="org-comment">% Height of the platform [mm]</span> <span class="org-string">'H_joint'</span>, <span class="org-highlight-numbers-number">15</span>, <span class="org-underline">...</span> <span class="org-comment">% Height of the joints [mm]</span> <span class="org-string">'H_plate'</span>, <span class="org-highlight-numbers-number">10</span>, <span class="org-underline">...</span> <span class="org-comment">% Thickness of the fixed and mobile platforms [mm]</span> <span class="org-string">'R_bot'</span>, <span class="org-highlight-numbers-number">100</span>, <span class="org-underline">...</span> <span class="org-comment">% Radius where the legs articulations are positionned [mm]</span> <span class="org-string">'R_top'</span>, <span class="org-highlight-numbers-number">80</span>, <span class="org-underline">...</span> <span class="org-comment">% Radius where the legs articulations are positionned [mm]</span> <span class="org-string">'a_bot'</span>, <span class="org-highlight-numbers-number">10</span>, <span class="org-underline">...</span> <span class="org-comment">% Angle Offset [deg]</span> <span class="org-string">'a_top'</span>, <span class="org-highlight-numbers-number">40</span>, <span class="org-underline">...</span> <span class="org-comment">% Angle Offset [deg]</span> <span class="org-string">'da_top'</span>, <span class="org-highlight-numbers-number">0</span> <span class="org-underline">...</span> % Angle Offset from <span class="org-highlight-numbers-number">0</span> position [deg] <span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <p> Populate opts with input parameters </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">if</span> exist<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'opts_param','var'</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-keyword">for</span> <span class="org-variable-name">opt</span> = <span class="org-constant">fieldnames</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">opts_param</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-constant">'</span> opts.<span class="org-rainbow-delimiters-depth-1">(</span>opt<span class="org-rainbow-delimiters-depth-2">{</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">}</span><span class="org-rainbow-delimiters-depth-1">)</span> = opts_param.<span class="org-rainbow-delimiters-depth-1">(</span>opt<span class="org-rainbow-delimiters-depth-2">{</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">}</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-keyword">end</span> <span class="org-keyword">end</span> </pre> </div> </div> </div> <div id="outline-container-org22df53a" class="outline-3"> <h3 id="org22df53a"><span class="section-number-3">1.3</span> Geometry Description</h3> <div class="outline-text-3" id="text-1-3"> <div id="orgeb6375e" class="figure"> <p><img src="./figs/stewart_bottom_plate.png" alt="stewart_bottom_plate.png" /> </p> <p><span class="figure-number">Figure 1: </span>Schematic of the bottom plates with all the parameters</p> </div> </div> </div> <div id="outline-container-orgcf32e31" class="outline-3"> <h3 id="orgcf32e31"><span class="section-number-3">1.4</span> Compute Aa and Ab</h3> <div class="outline-text-3" id="text-1-4"> <p> We compute \([a_1, a_2, a_3, a_4, a_5, a_6]^T\) and \([b_1, b_2, b_3, b_4, b_5, b_6]^T\). </p> <div class="org-src-container"> <pre class="src src-matlab">Aa = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% [mm]</span> Ab = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% [mm]</span> Bb = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% [mm]</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">3</span></span> Aa<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span><span class="org-type">*</span><span class="org-constant">i</span><span class="org-type">-</span><span class="org-highlight-numbers-number">1</span>,<span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-rainbow-delimiters-depth-1">[</span>opts.R_bot<span class="org-type">*</span>cos<span class="org-rainbow-delimiters-depth-2">(</span> <span class="org-constant">pi</span><span class="org-type">/</span><span class="org-highlight-numbers-number">180</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">120</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-4">(</span><span class="org-constant">i</span><span class="org-type">-</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-4">)</span> <span class="org-type">-</span> opts.a_bot<span class="org-rainbow-delimiters-depth-3">)</span> <span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-underline">...</span> opts.R_bot<span class="org-type">*</span>sin<span class="org-rainbow-delimiters-depth-2">(</span> <span class="org-constant">pi</span><span class="org-type">/</span><span class="org-highlight-numbers-number">180</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">120</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-4">(</span><span class="org-constant">i</span><span class="org-type">-</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-4">)</span> <span class="org-type">-</span> opts.a_bot<span class="org-rainbow-delimiters-depth-3">)</span> <span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-underline">...</span> opts.H_plate<span class="org-type">+</span>opts.H_joint<span class="org-rainbow-delimiters-depth-1">]</span>; Aa<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span><span class="org-type">*</span><span class="org-constant">i</span>,<span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-rainbow-delimiters-depth-1">[</span>opts.R_bot<span class="org-type">*</span>cos<span class="org-rainbow-delimiters-depth-2">(</span> <span class="org-constant">pi</span><span class="org-type">/</span><span class="org-highlight-numbers-number">180</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">120</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-4">(</span><span class="org-constant">i</span><span class="org-type">-</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-4">)</span> <span class="org-type">+</span> opts.a_bot<span class="org-rainbow-delimiters-depth-3">)</span> <span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-underline">...</span> opts.R_bot<span class="org-type">*</span>sin<span class="org-rainbow-delimiters-depth-2">(</span> <span class="org-constant">pi</span><span class="org-type">/</span><span class="org-highlight-numbers-number">180</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">120</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-4">(</span><span class="org-constant">i</span><span class="org-type">-</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-4">)</span> <span class="org-type">+</span> opts.a_bot<span class="org-rainbow-delimiters-depth-3">)</span> <span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-underline">...</span> opts.H_plate<span class="org-type">+</span>opts.H_joint<span class="org-rainbow-delimiters-depth-1">]</span>; Ab<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span><span class="org-type">*</span><span class="org-constant">i</span><span class="org-type">-</span><span class="org-highlight-numbers-number">1</span>,<span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-rainbow-delimiters-depth-1">[</span>opts.R_top<span class="org-type">*</span>cos<span class="org-rainbow-delimiters-depth-2">(</span> <span class="org-constant">pi</span><span class="org-type">/</span><span class="org-highlight-numbers-number">180</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">120</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-4">(</span><span class="org-constant">i</span><span class="org-type">-</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-4">)</span> <span class="org-type">+</span> opts.da_top <span class="org-type">-</span> opts.a_top<span class="org-rainbow-delimiters-depth-3">)</span> <span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-underline">...</span> opts.R_top<span class="org-type">*</span>sin<span class="org-rainbow-delimiters-depth-2">(</span> <span class="org-constant">pi</span><span class="org-type">/</span><span class="org-highlight-numbers-number">180</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">120</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-4">(</span><span class="org-constant">i</span><span class="org-type">-</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-4">)</span> <span class="org-type">+</span> opts.da_top <span class="org-type">-</span> opts.a_top<span class="org-rainbow-delimiters-depth-3">)</span> <span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-underline">...</span> opts.H_tot <span class="org-type">-</span> opts.H_plate <span class="org-type">-</span> opts.H_joint<span class="org-rainbow-delimiters-depth-1">]</span>; Ab<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span><span class="org-type">*</span><span class="org-constant">i</span>,<span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-rainbow-delimiters-depth-1">[</span>opts.R_top<span class="org-type">*</span>cos<span class="org-rainbow-delimiters-depth-2">(</span> <span class="org-constant">pi</span><span class="org-type">/</span><span class="org-highlight-numbers-number">180</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">120</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-4">(</span><span class="org-constant">i</span><span class="org-type">-</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-4">)</span> <span class="org-type">+</span> opts.da_top <span class="org-type">+</span> opts.a_top<span class="org-rainbow-delimiters-depth-3">)</span> <span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-underline">...</span> opts.R_top<span class="org-type">*</span>sin<span class="org-rainbow-delimiters-depth-2">(</span> <span class="org-constant">pi</span><span class="org-type">/</span><span class="org-highlight-numbers-number">180</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">120</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-4">(</span><span class="org-constant">i</span><span class="org-type">-</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-4">)</span> <span class="org-type">+</span> opts.da_top <span class="org-type">+</span> opts.a_top<span class="org-rainbow-delimiters-depth-3">)</span> <span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-underline">...</span> opts.H_tot <span class="org-type">-</span> opts.H_plate <span class="org-type">-</span> opts.H_joint<span class="org-rainbow-delimiters-depth-1">]</span>; <span class="org-keyword">end</span> Bb = Ab <span class="org-type">-</span> opts.H_tot<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>,<span class="org-highlight-numbers-number">0</span>,<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>; </pre> </div> </div> </div> <div id="outline-container-org4931162" class="outline-3"> <h3 id="org4931162"><span class="section-number-3">1.5</span> Returns Stewart Structure</h3> <div class="outline-text-3" id="text-1-5"> <div class="org-src-container"> <pre class="src src-matlab"> stewart = struct<span class="org-rainbow-delimiters-depth-1">()</span>; stewart.Aa = Aa; stewart.Ab = Ab; stewart.Bb = Bb; stewart.H_tot = opts.H_tot; <span class="org-keyword">end</span> </pre> </div> </div> </div> </div> <div id="outline-container-orgc4f14da" class="outline-2"> <h2 id="orgc4f14da"><span class="section-number-2">2</span> computeGeometricalProperties</h2> <div class="outline-text-2" id="text-2"> </div> <div id="outline-container-org7550562" class="outline-3"> <h3 id="org7550562"><span class="section-number-3">2.1</span> Function description</h3> <div class="outline-text-3" id="text-2-1"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">[</span></span><span class="org-variable-name">stewart</span><span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">]</span></span> = <span class="org-function-name">computeGeometricalProperties</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">stewart</span>, <span class="org-variable-name">opts_param</span><span class="org-rainbow-delimiters-depth-1">)</span> </pre> </div> </div> </div> <div id="outline-container-org0ec8d5e" class="outline-3"> <h3 id="org0ec8d5e"><span class="section-number-3">2.2</span> Optional Parameters</h3> <div class="outline-text-3" id="text-2-2"> <p> Default values for opts. </p> <div class="org-src-container"> <pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span> <span class="org-string">'Jd_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">30</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-underline">...</span> <span class="org-comment">% Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span> <span class="org-string">'Jf_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">30</span><span class="org-rainbow-delimiters-depth-2">]</span> <span class="org-underline">...</span> <span class="org-comment">% Position of the Jacobian for force location from the top of the mobile platform [mm]</span> <span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <p> Populate opts with input parameters </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">if</span> exist<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'opts_param','var'</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-keyword">for</span> <span class="org-variable-name">opt</span> = <span class="org-constant">fieldnames</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">opts_param</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-constant">'</span> opts.<span class="org-rainbow-delimiters-depth-1">(</span>opt<span class="org-rainbow-delimiters-depth-2">{</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">}</span><span class="org-rainbow-delimiters-depth-1">)</span> = opts_param.<span class="org-rainbow-delimiters-depth-1">(</span>opt<span class="org-rainbow-delimiters-depth-2">{</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">}</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-keyword">end</span> <span class="org-keyword">end</span> </pre> </div> </div> </div> <div id="outline-container-orgdc858fe" class="outline-3"> <h3 id="orgdc858fe"><span class="section-number-3">2.3</span> Rotation matrices</h3> <div class="outline-text-3" id="text-2-3"> <p> We initialize \(l_i\) and \(\hat{s}_i\) </p> <div class="org-src-container"> <pre class="src src-matlab">leg_length = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% [mm]</span> leg_vectors = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <p> We compute \(b_i - a_i\), and then: </p> \begin{align*} l_i &= \left|b_i - a_i\right| \\ \hat{s}_i &= \frac{b_i - a_i}{l_i} \end{align*} <div class="org-src-container"> <pre class="src src-matlab">legs = stewart.Ab <span class="org-type">-</span> stewart.Aa; <span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span> leg_length<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span> = norm<span class="org-rainbow-delimiters-depth-1">(</span>legs<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>,<span class="org-type">:</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>; leg_vectors<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>,<span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = legs<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>,<span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">/</span> leg_length<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-keyword">end</span> </pre> </div> <p> We compute rotation matrices to have the orientation of the legs. The rotation matrix transforms the \(z\) axis to the axis of the leg. The other axis are not important here. </p> <div class="org-src-container"> <pre class="src src-matlab">stewart.Rm = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'R'</span>, eye<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span> sx = cross<span class="org-rainbow-delimiters-depth-1">(</span>leg_vectors<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>,<span class="org-type">:</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>; sx = sx<span class="org-type">/</span>norm<span class="org-rainbow-delimiters-depth-1">(</span>sx<span class="org-rainbow-delimiters-depth-1">)</span>; sy = <span class="org-type">-</span>cross<span class="org-rainbow-delimiters-depth-1">(</span>sx, leg_vectors<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>,<span class="org-type">:</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>; sy = sy<span class="org-type">/</span>norm<span class="org-rainbow-delimiters-depth-1">(</span>sy<span class="org-rainbow-delimiters-depth-1">)</span>; sz = leg_vectors<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>,<span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>; sz = sz<span class="org-type">/</span>norm<span class="org-rainbow-delimiters-depth-1">(</span>sz<span class="org-rainbow-delimiters-depth-1">)</span>; stewart.Rm<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span>.R = <span class="org-rainbow-delimiters-depth-1">[</span>sx', sy', sz'<span class="org-rainbow-delimiters-depth-1">]</span>; <span class="org-keyword">end</span> </pre> </div> </div> </div> <div id="outline-container-orgc0b0116" class="outline-3"> <h3 id="orgc0b0116"><span class="section-number-3">2.4</span> Jacobian matrices</h3> <div class="outline-text-3" id="text-2-4"> <p> Compute Jacobian Matrix </p> <div class="org-src-container"> <pre class="src src-matlab">Jd = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span> Jd<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span> = leg_vectors<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>; Jd<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">4</span><span class="org-type">:</span><span class="org-highlight-numbers-number">6</span><span class="org-rainbow-delimiters-depth-1">)</span> = cross<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">001</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-2">(</span>stewart.Bb<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-3">)</span> <span class="org-type">-</span> opts.Jd_pos<span class="org-rainbow-delimiters-depth-2">)</span>, leg_vectors<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-keyword">end</span> stewart.Jd = Jd; stewart.Jd_inv = inv<span class="org-rainbow-delimiters-depth-1">(</span>Jd<span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">Jf = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span> Jf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">1</span><span class="org-type">:</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span> = leg_vectors<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>; Jf<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">4</span><span class="org-type">:</span><span class="org-highlight-numbers-number">6</span><span class="org-rainbow-delimiters-depth-1">)</span> = cross<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">001</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-2">(</span>stewart.Bb<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-3">)</span> <span class="org-type">-</span> opts.Jf_pos<span class="org-rainbow-delimiters-depth-2">)</span>, leg_vectors<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-keyword">end</span> stewart.Jf = Jf; stewart.Jf_inv = inv<span class="org-rainbow-delimiters-depth-1">(</span>Jf<span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">end</span> </pre> </div> </div> </div> </div> <div id="outline-container-org35cb27a" class="outline-2"> <h2 id="org35cb27a"><span class="section-number-2">3</span> initializeMechanicalElements</h2> <div class="outline-text-2" id="text-3"> </div> <div id="outline-container-orgeeb3d2f" class="outline-3"> <h3 id="orgeeb3d2f"><span class="section-number-3">3.1</span> Function description</h3> <div class="outline-text-3" id="text-3-1"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">[</span></span><span class="org-variable-name">stewart</span><span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">]</span></span> = <span class="org-function-name">initializeMechanicalElements</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">stewart</span>, <span class="org-variable-name">opts_param</span><span class="org-rainbow-delimiters-depth-1">)</span> </pre> </div> </div> </div> <div id="outline-container-org02f8d24" class="outline-3"> <h3 id="org02f8d24"><span class="section-number-3">3.2</span> Optional Parameters</h3> <div class="outline-text-3" id="text-3-2"> <p> Default values for opts. </p> <div class="org-src-container"> <pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span> <span class="org-string">'thickness'</span>, <span class="org-highlight-numbers-number">10</span>, <span class="org-underline">...</span> <span class="org-comment">% Thickness of the base and platform [mm]</span> <span class="org-string">'density'</span>, <span class="org-highlight-numbers-number">1000</span>, <span class="org-underline">...</span> <span class="org-comment">% Density of the material used for the hexapod [kg/m3]</span> <span class="org-string">'k_ax'</span>, <span class="org-highlight-numbers-number">1e8</span>, <span class="org-underline">...</span> <span class="org-comment">% Stiffness of each actuator [N/m]</span> <span class="org-string">'c_ax'</span>, <span class="org-highlight-numbers-number">1000</span>, <span class="org-underline">...</span> <span class="org-comment">% Damping of each actuator [N/(m/s)]</span> <span class="org-string">'stroke'</span>, <span class="org-highlight-numbers-number">50e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">6</span> <span class="org-underline">...</span> <span class="org-comment">% Maximum stroke of each actuator [m]</span> <span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <p> Populate opts with input parameters </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">if</span> exist<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'opts_param','var'</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-keyword">for</span> <span class="org-variable-name">opt</span> = <span class="org-constant">fieldnames</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">opts_param</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-constant">'</span> opts.<span class="org-rainbow-delimiters-depth-1">(</span>opt<span class="org-rainbow-delimiters-depth-2">{</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">}</span><span class="org-rainbow-delimiters-depth-1">)</span> = opts_param.<span class="org-rainbow-delimiters-depth-1">(</span>opt<span class="org-rainbow-delimiters-depth-2">{</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">}</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-keyword">end</span> <span class="org-keyword">end</span> </pre> </div> </div> </div> <div id="outline-container-orga56f635" class="outline-3"> <h3 id="orga56f635"><span class="section-number-3">3.3</span> Bottom Plate</h3> <div class="outline-text-3" id="text-3-3"> <div id="org61c842c" class="figure"> <p><img src="./figs/stewart_bottom_plate.png" alt="stewart_bottom_plate.png" /> </p> <p><span class="figure-number">Figure 2: </span>Schematic of the bottom plates with all the parameters</p> </div> <p> The bottom plate structure is initialized. </p> <div class="org-src-container"> <pre class="src src-matlab">BP = struct<span class="org-rainbow-delimiters-depth-1">()</span>; </pre> </div> <p> We defined its internal radius (if there is a hole in the bottom plate) and its outer radius. </p> <div class="org-src-container"> <pre class="src src-matlab">BP.Rint = <span class="org-highlight-numbers-number">0</span>; <span class="org-comment">% Internal Radius [mm]</span> BP.Rext = <span class="org-highlight-numbers-number">150</span>; <span class="org-comment">% External Radius [mm]</span> </pre> </div> <p> We define its thickness. </p> <div class="org-src-container"> <pre class="src src-matlab">BP.H = opts.thickness; <span class="org-comment">% Thickness of the Bottom Plate [mm]</span> </pre> </div> <p> We defined the density of the material of the bottom plate. </p> <div class="org-src-container"> <pre class="src src-matlab">BP.density = opts.density; <span class="org-comment">% Density of the material [kg/m3]</span> </pre> </div> <p> And its color. </p> <div class="org-src-container"> <pre class="src src-matlab">BP.color = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">7</span> <span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">7</span> <span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">7</span><span class="org-rainbow-delimiters-depth-1">]</span>; <span class="org-comment">% Color [RGB]</span> </pre> </div> <p> Then the profile of the bottom plate is computed and will be used by Simscape </p> <div class="org-src-container"> <pre class="src src-matlab">BP.shape = <span class="org-rainbow-delimiters-depth-1">[</span>BP.Rint BP.H; BP.Rint <span class="org-highlight-numbers-number">0</span>; BP.Rext <span class="org-highlight-numbers-number">0</span>; BP.Rext BP.H<span class="org-rainbow-delimiters-depth-1">]</span>; <span class="org-comment">% [mm]</span> </pre> </div> <p> The structure is added to the stewart structure </p> <div class="org-src-container"> <pre class="src src-matlab">stewart.BP = BP; </pre> </div> </div> </div> <div id="outline-container-orge8a195c" class="outline-3"> <h3 id="orge8a195c"><span class="section-number-3">3.4</span> Top Plate</h3> <div class="outline-text-3" id="text-3-4"> <p> The top plate structure is initialized. </p> <div class="org-src-container"> <pre class="src src-matlab">TP = struct<span class="org-rainbow-delimiters-depth-1">()</span>; </pre> </div> <p> We defined the internal and external radius of the top plate. </p> <div class="org-src-container"> <pre class="src src-matlab">TP.Rint = <span class="org-highlight-numbers-number">0</span>; <span class="org-comment">% [mm]</span> TP.Rext = <span class="org-highlight-numbers-number">100</span>; <span class="org-comment">% [mm]</span> </pre> </div> <p> The thickness of the top plate. </p> <div class="org-src-container"> <pre class="src src-matlab">TP.H = <span class="org-highlight-numbers-number">10</span>; <span class="org-comment">% [mm]</span> </pre> </div> <p> The density of its material. </p> <div class="org-src-container"> <pre class="src src-matlab">TP.density = opts.density; <span class="org-comment">% Density of the material [kg/m3]</span> </pre> </div> <p> Its color. </p> <div class="org-src-container"> <pre class="src src-matlab">TP.color = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">7</span> <span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">7</span> <span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">7</span><span class="org-rainbow-delimiters-depth-1">]</span>; <span class="org-comment">% Color [RGB]</span> </pre> </div> <p> Then the shape of the top plate is computed </p> <div class="org-src-container"> <pre class="src src-matlab">TP.shape = <span class="org-rainbow-delimiters-depth-1">[</span>TP.Rint TP.H; TP.Rint <span class="org-highlight-numbers-number">0</span>; TP.Rext <span class="org-highlight-numbers-number">0</span>; TP.Rext TP.H<span class="org-rainbow-delimiters-depth-1">]</span>; </pre> </div> <p> The structure is added to the stewart structure </p> <div class="org-src-container"> <pre class="src src-matlab">stewart.TP = TP; </pre> </div> </div> </div> <div id="outline-container-org8725a51" class="outline-3"> <h3 id="org8725a51"><span class="section-number-3">3.5</span> Legs</h3> <div class="outline-text-3" id="text-3-5"> <div id="org50ef74c" class="figure"> <p><img src="./figs/stewart_legs.png" alt="stewart_legs.png" /> </p> <p><span class="figure-number">Figure 3: </span>Schematic for the legs of the Stewart platform</p> </div> <p> The leg structure is initialized. </p> <div class="org-src-container"> <pre class="src src-matlab">Leg = struct<span class="org-rainbow-delimiters-depth-1">()</span>; </pre> </div> <p> The maximum Stroke of each leg is defined. </p> <div class="org-src-container"> <pre class="src src-matlab">Leg.stroke = opts.stroke; <span class="org-comment">% [m]</span> </pre> </div> <p> The stiffness and damping of each leg are defined </p> <div class="org-src-container"> <pre class="src src-matlab">Leg.k_ax = opts.k_ax; <span class="org-comment">% Stiffness of each leg [N/m]</span> Leg.c_ax = opts.c_ax; <span class="org-comment">% Damping of each leg [N/(m/s)]</span> </pre> </div> <p> The radius of the legs are defined </p> <div class="org-src-container"> <pre class="src src-matlab">Leg.Rtop = <span class="org-highlight-numbers-number">10</span>; <span class="org-comment">% Radius of the cylinder of the top part of the leg[mm]</span> Leg.Rbot = <span class="org-highlight-numbers-number">12</span>; <span class="org-comment">% Radius of the cylinder of the bottom part of the leg [mm]</span> </pre> </div> <p> The density of its material. </p> <div class="org-src-container"> <pre class="src src-matlab">Leg.density = opts.density; <span class="org-comment">% Density of the material used for the legs [kg/m3]</span> </pre> </div> <p> Its color. </p> <div class="org-src-container"> <pre class="src src-matlab">Leg.color = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">5</span> <span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">5</span> <span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">5</span><span class="org-rainbow-delimiters-depth-1">]</span>; <span class="org-comment">% Color of the top part of the leg [RGB]</span> </pre> </div> <p> The radius of spheres representing the ball joints are defined. </p> <div class="org-src-container"> <pre class="src src-matlab">Leg.R = <span class="org-highlight-numbers-number">1</span>.<span class="org-highlight-numbers-number">3</span><span class="org-type">*</span>Leg.Rbot; <span class="org-comment">% Size of the sphere at the extremity of the leg [mm]</span> </pre> </div> <p> We estimate the length of the legs. </p> <div class="org-src-container"> <pre class="src src-matlab">legs = stewart.Ab <span class="org-type">-</span> stewart.Aa; Leg.lenght = norm<span class="org-rainbow-delimiters-depth-1">(</span>legs<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">1</span>,<span class="org-type">:</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">/</span><span class="org-highlight-numbers-number">1</span>.<span class="org-highlight-numbers-number">5</span>; </pre> </div> <p> Then the shape of the bottom leg is estimated </p> <div class="org-src-container"> <pre class="src src-matlab">Leg.shape.bot = <span class="org-underline">...</span> <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span>; <span class="org-underline">...</span> Leg.Rbot <span class="org-highlight-numbers-number">0</span>; <span class="org-underline">...</span> Leg.Rbot Leg.lenght; <span class="org-underline">...</span> Leg.Rtop Leg.lenght; <span class="org-underline">...</span> Leg.Rtop <span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">2</span><span class="org-type">*</span>Leg.lenght; <span class="org-underline">...</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">2</span><span class="org-type">*</span>Leg.lenght<span class="org-rainbow-delimiters-depth-1">]</span>; </pre> </div> <p> The structure is added to the stewart structure </p> <div class="org-src-container"> <pre class="src src-matlab">stewart.Leg = Leg; </pre> </div> </div> </div> <div id="outline-container-org722b78f" class="outline-3"> <h3 id="org722b78f"><span class="section-number-3">3.6</span> Ball Joints</h3> <div class="outline-text-3" id="text-3-6"> <div id="org38b2e38" class="figure"> <p><img src="./figs/stewart_ball_joints.png" alt="stewart_ball_joints.png" /> </p> <p><span class="figure-number">Figure 4: </span>Schematic of the support for the ball joints</p> </div> <p> <code>SP</code> is the structure representing the support for the ball joints at the extremity of each leg. </p> <p> The <code>SP</code> structure is initialized. </p> <div class="org-src-container"> <pre class="src src-matlab">SP = struct<span class="org-rainbow-delimiters-depth-1">()</span>; </pre> </div> <p> We can define its rotational stiffness and damping. For now, we use perfect joints. </p> <div class="org-src-container"> <pre class="src src-matlab">SP.k = <span class="org-highlight-numbers-number">0</span>; <span class="org-comment">% [N*m/deg]</span> SP.c = <span class="org-highlight-numbers-number">0</span>; <span class="org-comment">% [N*m/deg]</span> </pre> </div> <p> Its height is defined </p> <div class="org-src-container"> <pre class="src src-matlab">SP.H = stewart.Aa<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">-</span> BP.H; <span class="org-comment">% [mm]</span> </pre> </div> <p> Its radius is based on the radius on the sphere at the end of the legs. </p> <div class="org-src-container"> <pre class="src src-matlab">SP.R = Leg.R; <span class="org-comment">% [mm]</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">SP.section = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span> SP.H<span class="org-type">-</span>SP.R; <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span>; SP.R <span class="org-highlight-numbers-number">0</span>; SP.R SP.H<span class="org-rainbow-delimiters-depth-1">]</span>; </pre> </div> <p> The density of its material is defined. </p> <div class="org-src-container"> <pre class="src src-matlab">SP.density = opts.density; % [kg<span class="org-type">/</span>m<span class="org-type">^</span><span class="org-highlight-numbers-number">3</span>] </pre> </div> <p> Its color is defined. </p> <div class="org-src-container"> <pre class="src src-matlab">SP.color = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">7</span> <span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">7</span> <span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">7</span><span class="org-rainbow-delimiters-depth-1">]</span>; <span class="org-comment">% [RGB]</span> </pre> </div> <p> The structure is added to the Hexapod structure </p> <div class="org-src-container"> <pre class="src src-matlab">stewart.SP = SP; </pre> </div> </div> </div> </div> <div id="outline-container-org5ba95d3" class="outline-2"> <h2 id="org5ba95d3"><span class="section-number-2">4</span> initializeSample</h2> <div class="outline-text-2" id="text-4"> </div> <div id="outline-container-org2dd34bb" class="outline-3"> <h3 id="org2dd34bb"><span class="section-number-3">4.1</span> Function description</h3> <div class="outline-text-3" id="text-4-1"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">[]</span></span> = <span class="org-function-name">initializeSample</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">opts_param</span><span class="org-rainbow-delimiters-depth-1">)</span> </pre> </div> </div> </div> <div id="outline-container-org2aa1dac" class="outline-3"> <h3 id="org2aa1dac"><span class="section-number-3">4.2</span> Optional Parameters</h3> <div class="outline-text-3" id="text-4-2"> <p> Default values for opts. </p> <div class="org-src-container"> <pre class="src src-matlab">sample = struct<span class="org-rainbow-delimiters-depth-1">(</span> <span class="org-underline">...</span> <span class="org-string">'radius'</span>, <span class="org-highlight-numbers-number">100</span>, <span class="org-underline">...</span> <span class="org-comment">% radius of the cylinder [mm]</span> <span class="org-string">'height'</span>, <span class="org-highlight-numbers-number">100</span>, <span class="org-underline">...</span> <span class="org-comment">% height of the cylinder [mm]</span> <span class="org-string">'mass'</span>, <span class="org-highlight-numbers-number">10</span>, <span class="org-underline">...</span> <span class="org-comment">% mass of the cylinder [kg]</span> <span class="org-string">'measheight'</span>, <span class="org-highlight-numbers-number">50</span>, <span class="org-underline">...</span> <span class="org-comment">% measurement point z-offset [mm]</span> <span class="org-string">'offset'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-underline">...</span> <span class="org-comment">% offset position of the sample [mm]</span> <span class="org-string">'color'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">9</span> <span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span>.<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">]</span> <span class="org-underline">...</span> <span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <p> Populate opts with input parameters </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">if</span> exist<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'opts_param','var'</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-keyword">for</span> <span class="org-variable-name">opt</span> = <span class="org-constant">fieldnames</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">opts_param</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-constant">'</span> sample.<span class="org-rainbow-delimiters-depth-1">(</span>opt<span class="org-rainbow-delimiters-depth-2">{</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">}</span><span class="org-rainbow-delimiters-depth-1">)</span> = opts_param.<span class="org-rainbow-delimiters-depth-1">(</span>opt<span class="org-rainbow-delimiters-depth-2">{</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">}</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-keyword">end</span> <span class="org-keyword">end</span> </pre> </div> </div> </div> <div id="outline-container-orgea68e95" class="outline-3"> <h3 id="orgea68e95"><span class="section-number-3">4.3</span> Save the Sample structure</h3> <div class="outline-text-3" id="text-4-3"> <div class="org-src-container"> <pre class="src src-matlab">save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/sample.mat', 'sample'</span><span class="org-rainbow-delimiters-depth-1">)</span>; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">end</span> </pre> </div> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Thomas Dehaeze</p> <p class="date">Created: 2019-08-26 lun. 11:56</p> <p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p> </div> </body> </html>