<?xml version="1.0" encoding="utf-8"?> <?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2020-03-02 lun. 17:57 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>Stewart Platform - Decentralized Active Damping</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <style type="text/css"> <!--/*--><![CDATA[/*><!--*/ .title { text-align: center; margin-bottom: .2em; } .subtitle { text-align: center; font-size: medium; font-weight: bold; margin-top:0; } .todo { font-family: monospace; color: red; } .done { font-family: monospace; color: green; } .priority { font-family: monospace; color: orange; } .tag { background-color: #eee; font-family: monospace; padding: 2px; font-size: 80%; font-weight: normal; } .timestamp { color: #bebebe; } .timestamp-kwd { color: #5f9ea0; } .org-right { margin-left: auto; margin-right: 0px; text-align: right; } .org-left { margin-left: 0px; margin-right: auto; text-align: left; } .org-center { margin-left: auto; margin-right: auto; text-align: center; } .underline { text-decoration: underline; } #postamble p, #preamble p { font-size: 90%; margin: .2em; } p.verse { margin-left: 3%; } pre { border: 1px solid #ccc; box-shadow: 3px 3px 3px #eee; padding: 8pt; font-family: monospace; overflow: auto; margin: 1.2em; } pre.src { position: relative; overflow: visible; padding-top: 1.2em; } pre.src:before { display: none; position: absolute; background-color: white; top: -10px; right: 10px; padding: 3px; border: 1px solid black; } pre.src:hover:before { display: inline;} /* Languages per Org manual */ pre.src-asymptote:before { content: 'Asymptote'; } pre.src-awk:before { content: 'Awk'; } pre.src-C:before { content: 'C'; } /* pre.src-C++ doesn't work in CSS */ pre.src-clojure:before { content: 'Clojure'; } pre.src-css:before { content: 'CSS'; } pre.src-D:before { content: 'D'; } pre.src-ditaa:before { content: 'ditaa'; } pre.src-dot:before { content: 'Graphviz'; } pre.src-calc:before { content: 'Emacs Calc'; } pre.src-emacs-lisp:before { content: 'Emacs Lisp'; } pre.src-fortran:before { content: 'Fortran'; } pre.src-gnuplot:before { content: 'gnuplot'; } pre.src-haskell:before { content: 'Haskell'; } pre.src-hledger:before { content: 'hledger'; } pre.src-java:before { content: 'Java'; } pre.src-js:before { content: 'Javascript'; } pre.src-latex:before { content: 'LaTeX'; } pre.src-ledger:before { content: 'Ledger'; } pre.src-lisp:before { content: 'Lisp'; } pre.src-lilypond:before { content: 'Lilypond'; } pre.src-lua:before { content: 'Lua'; } pre.src-matlab:before { content: 'MATLAB'; } pre.src-mscgen:before { content: 'Mscgen'; } pre.src-ocaml:before { content: 'Objective Caml'; } pre.src-octave:before { content: 'Octave'; } pre.src-org:before { content: 'Org mode'; } pre.src-oz:before { content: 'OZ'; } pre.src-plantuml:before { content: 'Plantuml'; } pre.src-processing:before { content: 'Processing.js'; } pre.src-python:before { content: 'Python'; } pre.src-R:before { content: 'R'; } pre.src-ruby:before { content: 'Ruby'; } pre.src-sass:before { content: 'Sass'; } pre.src-scheme:before { content: 'Scheme'; } pre.src-screen:before { content: 'Gnu Screen'; } pre.src-sed:before { content: 'Sed'; } pre.src-sh:before { content: 'shell'; } pre.src-sql:before { content: 'SQL'; } pre.src-sqlite:before { content: 'SQLite'; } /* additional languages in org.el's org-babel-load-languages alist */ pre.src-forth:before { content: 'Forth'; } pre.src-io:before { content: 'IO'; } pre.src-J:before { content: 'J'; } pre.src-makefile:before { content: 'Makefile'; } pre.src-maxima:before { content: 'Maxima'; } pre.src-perl:before { content: 'Perl'; } pre.src-picolisp:before { content: 'Pico Lisp'; } pre.src-scala:before { content: 'Scala'; } pre.src-shell:before { content: 'Shell Script'; } pre.src-ebnf2ps:before { content: 'ebfn2ps'; } /* additional language identifiers per "defun org-babel-execute" in ob-*.el */ pre.src-cpp:before { content: 'C++'; } pre.src-abc:before { content: 'ABC'; } pre.src-coq:before { content: 'Coq'; } pre.src-groovy:before { content: 'Groovy'; } /* additional language identifiers from org-babel-shell-names in ob-shell.el: ob-shell is the only babel language using a lambda to put the execution function name together. */ pre.src-bash:before { content: 'bash'; } pre.src-csh:before { content: 'csh'; } pre.src-ash:before { content: 'ash'; } pre.src-dash:before { content: 'dash'; } pre.src-ksh:before { content: 'ksh'; } pre.src-mksh:before { content: 'mksh'; } pre.src-posh:before { content: 'posh'; } /* Additional Emacs modes also supported by the LaTeX listings package */ pre.src-ada:before { content: 'Ada'; } pre.src-asm:before { content: 'Assembler'; } pre.src-caml:before { content: 'Caml'; } pre.src-delphi:before { content: 'Delphi'; } pre.src-html:before { content: 'HTML'; } pre.src-idl:before { content: 'IDL'; } pre.src-mercury:before { content: 'Mercury'; } pre.src-metapost:before { content: 'MetaPost'; } pre.src-modula-2:before { content: 'Modula-2'; } pre.src-pascal:before { content: 'Pascal'; } pre.src-ps:before { content: 'PostScript'; } pre.src-prolog:before { content: 'Prolog'; } pre.src-simula:before { content: 'Simula'; } pre.src-tcl:before { content: 'tcl'; } pre.src-tex:before { content: 'TeX'; } pre.src-plain-tex:before { content: 'Plain TeX'; } pre.src-verilog:before { content: 'Verilog'; } pre.src-vhdl:before { content: 'VHDL'; } pre.src-xml:before { content: 'XML'; } pre.src-nxml:before { content: 'XML'; } /* add a generic configuration mode; LaTeX export needs an additional (add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */ pre.src-conf:before { content: 'Configuration File'; } table { border-collapse:collapse; } caption.t-above { caption-side: top; } caption.t-bottom { caption-side: bottom; } td, th { vertical-align:top; } th.org-right { text-align: center; } th.org-left { text-align: center; } th.org-center { text-align: center; } td.org-right { text-align: right; } td.org-left { text-align: left; } td.org-center { text-align: center; } dt { font-weight: bold; } .footpara { display: inline; } .footdef { margin-bottom: 1em; } .figure { padding: 1em; } .figure p { text-align: center; } .equation-container { display: table; text-align: center; width: 100%; } .equation { vertical-align: middle; } .equation-label { display: table-cell; text-align: right; vertical-align: middle; } .inlinetask { padding: 10px; border: 2px solid gray; margin: 10px; background: #ffffcc; } #org-div-home-and-up { text-align: right; font-size: 70%; white-space: nowrap; } textarea { overflow-x: auto; } .linenr { font-size: smaller } .code-highlighted { background-color: #ffff00; } .org-info-js_info-navigation { border-style: none; } #org-info-js_console-label { font-size: 10px; font-weight: bold; white-space: nowrap; } .org-info-js_search-highlight { background-color: #ffff00; color: #000000; font-weight: bold; } .org-svg { width: 90%; } /*]]>*/--> </style> <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/> <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/> <script src="./js/jquery.min.js"></script> <script src="./js/bootstrap.min.js"></script> <script src="./js/jquery.stickytableheaders.min.js"></script> <script src="./js/readtheorg.js"></script> <script type="text/javascript"> // @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later <!--/*--><![CDATA[/*><!--*/ function CodeHighlightOn(elem, id) { var target = document.getElementById(id); if(null != target) { elem.cacheClassElem = elem.className; elem.cacheClassTarget = target.className; target.className = "code-highlighted"; elem.className = "code-highlighted"; } } function CodeHighlightOff(elem, id) { var target = document.getElementById(id); if(elem.cacheClassElem) elem.className = elem.cacheClassElem; if(elem.cacheClassTarget) target.className = elem.cacheClassTarget; } /*]]>*///--> // @license-end </script> <script> MathJax = { tex: { macros: { bm: ["\\boldsymbol{#1}",1], } } }; </script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="./index.html"> UP </a> | <a accesskey="H" href="./index.html"> HOME </a> </div><div id="content"> <h1 class="title">Stewart Platform - Decentralized Active Damping</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#orgd59c804">1. Inertial Control</a> <ul> <li><a href="#org5f749c8">1.1. Identification of the Dynamics</a></li> <li><a href="#orgd0f78f7">1.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li> <li><a href="#org3f64d96">1.3. Obtained Damping</a></li> <li><a href="#org8e1ece7">1.4. Conclusion</a></li> </ul> </li> <li><a href="#org74c7eb4">2. Integral Force Feedback</a> <ul> <li><a href="#orgcd99b62">2.1. Identification of the Dynamics with perfect Joints</a></li> <li><a href="#org1b7a953">2.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li> <li><a href="#org1d362f0">2.3. Obtained Damping</a></li> <li><a href="#org63f9110">2.4. Conclusion</a></li> </ul> </li> <li><a href="#org08917d6">3. Direct Velocity Feedback</a> <ul> <li><a href="#org5364f58">3.1. Identification of the Dynamics with perfect Joints</a></li> <li><a href="#org81b6713">3.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li> <li><a href="#orge328103">3.3. Obtained Damping</a></li> <li><a href="#org48c963f">3.4. Conclusion</a></li> </ul> </li> <li><a href="#org183f3f2">4. Compliance and Transmissibility Comparison</a> <ul> <li><a href="#org0ed1499">4.1. Initialization</a></li> <li><a href="#orgcd64c04">4.2. Identification</a></li> <li><a href="#orgd30c62d">4.3. Results</a></li> </ul> </li> </ul> </div> </div> <p> The following decentralized active damping techniques are briefly studied: </p> <ul class="org-ul"> <li>Inertial Control (proportional feedback of the absolute velocity): Section <a href="#orgeb37c7d">1</a></li> <li>Integral Force Feedback: Section <a href="#orgab5e6b5">2</a></li> <li>Direct feedback of the relative velocity of each strut: Section <a href="#org0aa816a">3</a></li> </ul> <div id="outline-container-orgd59c804" class="outline-2"> <h2 id="orgd59c804"><span class="section-number-2">1</span> Inertial Control</h2> <div class="outline-text-2" id="text-1"> <p> <a id="orgeb37c7d"></a> </p> <div class="note"> <p> The Matlab script corresponding to this section is accessible <a href="../matlab/active_damping_inertial.m">here</a>. </p> <p> To run the script, open the Simulink Project, and type <code>run active_damping_inertial.m</code>. </p> </div> </div> <div id="outline-container-org5f749c8" class="outline-3"> <h3 id="org5f749c8"><span class="section-number-3">1.1</span> Identification of the Dynamics</h3> <div class="outline-text-3" id="text-1-1"> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A); payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_model'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span> io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Vm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute velocity of each leg [m/s]</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io, options); G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; G.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>}; </pre> </div> <p> The transfer function from actuator forces to force sensors is shown in Figure <a href="#org834d990">1</a>. </p> <div id="org834d990" class="figure"> <p><img src="figs/inertial_plant_coupling.png" alt="inertial_plant_coupling.png" /> </p> <p><span class="figure-number">Figure 1: </span>Transfer function from the Actuator force \(F_{i}\) to the absolute velocity of the same leg \(v_{m,i}\) and to the absolute velocity of the other legs \(v_{m,j}\) with \(i \neq j\) in grey (<a href="./figs/inertial_plant_coupling.png">png</a>, <a href="./figs/inertial_plant_coupling.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-orgd0f78f7" class="outline-3"> <h3 id="orgd0f78f7"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3> <div class="outline-text-3" id="text-1-2"> <p> We add some stiffness and damping in the flexible joints and we re-identify the dynamics. </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>); Gf = linearize(mdl, io, options); Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; Gf.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>}; </pre> </div> <p> We now use the amplified actuators and re-identify the dynamics </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeAmplifiedStrutDynamics(stewart); Ga = linearize(mdl, io, options); Ga.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; Ga.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>}; </pre> </div> <p> The new dynamics from force actuator to force sensor is shown in Figure <a href="#org683c779">2</a>. </p> <div id="org683c779" class="figure"> <p><img src="figs/inertial_plant_flexible_joint_decentralized.png" alt="inertial_plant_flexible_joint_decentralized.png" /> </p> <p><span class="figure-number">Figure 2: </span>Transfer function from the Actuator force \(F_{i}\) to the absolute velocity sensor \(v_{m,i}\) (<a href="./figs/inertial_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/inertial_plant_flexible_joint_decentralized.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org3f64d96" class="outline-3"> <h3 id="org3f64d96"><span class="section-number-3">1.3</span> Obtained Damping</h3> <div class="outline-text-3" id="text-1-3"> <p> The control is a performed in a decentralized manner. The \(6 \times 6\) control is a diagonal matrix with pure proportional action on the diagonal: \[ K(s) = g \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{bmatrix} \] </p> <p> The root locus is shown in figure <a href="#org9af9e33">3</a>. </p> <div id="org9af9e33" class="figure"> <p><img src="figs/root_locus_inertial_rot_stiffness.png" alt="root_locus_inertial_rot_stiffness.png" /> </p> <p><span class="figure-number">Figure 3: </span>Root Locus plot with Decentralized Inertial Control when considering the stiffness of flexible joints (<a href="./figs/root_locus_inertial_rot_stiffness.png">png</a>, <a href="./figs/root_locus_inertial_rot_stiffness.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org8e1ece7" class="outline-3"> <h3 id="org8e1ece7"><span class="section-number-3">1.4</span> Conclusion</h3> <div class="outline-text-3" id="text-1-4"> <div class="important"> <p> We do not have guaranteed stability with Inertial control. This is because of the flexibility inside the internal sensor. </p> </div> </div> </div> </div> <div id="outline-container-org74c7eb4" class="outline-2"> <h2 id="org74c7eb4"><span class="section-number-2">2</span> Integral Force Feedback</h2> <div class="outline-text-2" id="text-2"> <p> <a id="orgab5e6b5"></a> </p> <div class="note"> <p> The Matlab script corresponding to this section is accessible <a href="../matlab/active_damping_iff.m">here</a>. </p> <p> To run the script, open the Simulink Project, and type <code>run active_damping_iff.m</code>. </p> </div> </div> <div id="outline-container-orgcd99b62" class="outline-3"> <h3 id="orgcd99b62"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3> <div class="outline-text-3" id="text-2-1"> <p> We first initialize the Stewart platform without joint stiffness. </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A); payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); </pre> </div> <p> And we identify the dynamics from force actuators to force sensors. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_model'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span> io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'Taum'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Force Sensor Outputs [N]</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io); G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; G.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>}; </pre> </div> <p> The transfer function from actuator forces to force sensors is shown in Figure <a href="#org3fca9dd">4</a>. </p> <div id="org3fca9dd" class="figure"> <p><img src="figs/iff_plant_coupling.png" alt="iff_plant_coupling.png" /> </p> <p><span class="figure-number">Figure 4: </span>Transfer function from the Actuator force \(F_{i}\) to the Force sensor of the same leg \(F_{m,i}\) and to the force sensor of the other legs \(F_{m,j}\) with \(i \neq j\) in grey (<a href="./figs/iff_plant_coupling.png">png</a>, <a href="./figs/iff_plant_coupling.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org1b7a953" class="outline-3"> <h3 id="org1b7a953"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3> <div class="outline-text-3" id="text-2-2"> <p> We add some stiffness and damping in the flexible joints and we re-identify the dynamics. </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>); Gf = linearize(mdl, io); Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; Gf.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>}; </pre> </div> <p> We now use the amplified actuators and re-identify the dynamics </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeAmplifiedStrutDynamics(stewart); Ga = linearize(mdl, io); Ga.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; Ga.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>}; </pre> </div> <p> The new dynamics from force actuator to force sensor is shown in Figure <a href="#org090868b">5</a>. </p> <div id="org090868b" class="figure"> <p><img src="figs/iff_plant_flexible_joint_decentralized.png" alt="iff_plant_flexible_joint_decentralized.png" /> </p> <p><span class="figure-number">Figure 5: </span>Transfer function from the Actuator force \(F_{i}\) to the force sensor \(F_{m,i}\) (<a href="./figs/iff_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/iff_plant_flexible_joint_decentralized.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org1d362f0" class="outline-3"> <h3 id="org1d362f0"><span class="section-number-3">2.3</span> Obtained Damping</h3> <div class="outline-text-3" id="text-2-3"> <p> The control is a performed in a decentralized manner. The \(6 \times 6\) control is a diagonal matrix with pure integration action on the diagonal: \[ K(s) = g \begin{bmatrix} \frac{1}{s} & & 0 \\ & \ddots & \\ 0 & & \frac{1}{s} \end{bmatrix} \] </p> <p> The root locus is shown in figure <a href="#orge21bbea">6</a> and the obtained pole damping function of the control gain is shown in figure <a href="#org94d6943">7</a>. </p> <div id="orge21bbea" class="figure"> <p><img src="figs/root_locus_iff_rot_stiffness.png" alt="root_locus_iff_rot_stiffness.png" /> </p> <p><span class="figure-number">Figure 6: </span>Root Locus plot with Decentralized Integral Force Feedback when considering the stiffness of flexible joints (<a href="./figs/root_locus_iff_rot_stiffness.png">png</a>, <a href="./figs/root_locus_iff_rot_stiffness.pdf">pdf</a>)</p> </div> <div id="org94d6943" class="figure"> <p><img src="figs/pole_damping_gain_iff_rot_stiffness.png" alt="pole_damping_gain_iff_rot_stiffness.png" /> </p> <p><span class="figure-number">Figure 7: </span>Damping of the poles with respect to the gain of the Decentralized Integral Force Feedback when considering the stiffness of flexible joints (<a href="./figs/pole_damping_gain_iff_rot_stiffness.png">png</a>, <a href="./figs/pole_damping_gain_iff_rot_stiffness.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org63f9110" class="outline-3"> <h3 id="org63f9110"><span class="section-number-3">2.4</span> Conclusion</h3> <div class="outline-text-3" id="text-2-4"> <div class="important"> <p> The joint stiffness has a huge impact on the attainable active damping performance when using force sensors. Thus, if Integral Force Feedback is to be used in a Stewart platform with flexible joints, the rotational stiffness of the joints should be minimized. </p> </div> </div> </div> </div> <div id="outline-container-org08917d6" class="outline-2"> <h2 id="org08917d6"><span class="section-number-2">3</span> Direct Velocity Feedback</h2> <div class="outline-text-2" id="text-3"> <p> <a id="org0aa816a"></a> </p> <div class="note"> <p> The Matlab script corresponding to this section is accessible <a href="../matlab/active_damping_dvf.m">here</a>. </p> <p> To run the script, open the Simulink Project, and type <code>run active_damping_dvf.m</code>. </p> </div> </div> <div id="outline-container-org5364f58" class="outline-3"> <h3 id="org5364f58"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3> <div class="outline-text-3" id="text-3-1"> <p> We first initialize the Stewart platform without joint stiffness. </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A); payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); </pre> </div> <p> And we identify the dynamics from force actuators to force sensors. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_model'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span> io(io_i) = linio([mdl, <span class="org-string">'/Stewart Platform'</span>], 1, <span class="org-string">'openoutput'</span>, [], <span class="org-string">'dLm'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Displacement Outputs [m]</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io, options); G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; G.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>}; </pre> </div> <p> The transfer function from actuator forces to relative motion sensors is shown in Figure <a href="#orgcc86228">8</a>. </p> <div id="orgcc86228" class="figure"> <p><img src="figs/dvf_plant_coupling.png" alt="dvf_plant_coupling.png" /> </p> <p><span class="figure-number">Figure 8: </span>Transfer function from the Actuator force \(F_{i}\) to the Relative Motion Sensor \(D_{m,j}\) with \(i \neq j\) (<a href="./figs/dvf_plant_coupling.png">png</a>, <a href="./figs/dvf_plant_coupling.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org81b6713" class="outline-3"> <h3 id="org81b6713"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3> <div class="outline-text-3" id="text-3-2"> <p> We add some stiffness and damping in the flexible joints and we re-identify the dynamics. </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>); Gf = linearize(mdl, io, options); Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; Gf.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>}; </pre> </div> <p> We now use the amplified actuators and re-identify the dynamics </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeAmplifiedStrutDynamics(stewart); Ga = linearize(mdl, io, options); Ga.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; Ga.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>}; </pre> </div> <p> The new dynamics from force actuator to relative motion sensor is shown in Figure <a href="#org5a86447">9</a>. </p> <div id="org5a86447" class="figure"> <p><img src="figs/dvf_plant_flexible_joint_decentralized.png" alt="dvf_plant_flexible_joint_decentralized.png" /> </p> <p><span class="figure-number">Figure 9: </span>Transfer function from the Actuator force \(F_{i}\) to the relative displacement sensor \(D_{m,i}\) (<a href="./figs/dvf_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/dvf_plant_flexible_joint_decentralized.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-orge328103" class="outline-3"> <h3 id="orge328103"><span class="section-number-3">3.3</span> Obtained Damping</h3> <div class="outline-text-3" id="text-3-3"> <p> The control is a performed in a decentralized manner. The \(6 \times 6\) control is a diagonal matrix with pure derivative action on the diagonal: \[ K(s) = g \begin{bmatrix} s & & \\ & \ddots & \\ & & s \end{bmatrix} \] </p> <p> The root locus is shown in figure <a href="#org277d60d">10</a>. </p> <div id="org277d60d" class="figure"> <p><img src="figs/root_locus_dvf_rot_stiffness.png" alt="root_locus_dvf_rot_stiffness.png" /> </p> <p><span class="figure-number">Figure 10: </span>Root Locus plot with Direct Velocity Feedback when considering the Stiffness of flexible joints (<a href="./figs/root_locus_dvf_rot_stiffness.png">png</a>, <a href="./figs/root_locus_dvf_rot_stiffness.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org48c963f" class="outline-3"> <h3 id="org48c963f"><span class="section-number-3">3.4</span> Conclusion</h3> <div class="outline-text-3" id="text-3-4"> <div class="important"> <p> Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors. </p> </div> </div> </div> </div> <div id="outline-container-org183f3f2" class="outline-2"> <h2 id="org183f3f2"><span class="section-number-2">4</span> Compliance and Transmissibility Comparison</h2> <div class="outline-text-2" id="text-4"> </div> <div id="outline-container-org0ed1499" class="outline-3"> <h3 id="org0ed1499"><span class="section-number-3">4.1</span> Initialization</h3> <div class="outline-text-3" id="text-4-1"> <p> We first initialize the Stewart platform without joint stiffness. </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>); </pre> </div> <p> The rotation point of the ground is located at the origin of frame \(\{A\}\). </p> <div class="org-src-container"> <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A); payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); </pre> </div> </div> </div> <div id="outline-container-orgcd64c04" class="outline-3"> <h3 id="orgcd64c04"><span class="section-number-3">4.2</span> Identification</h3> <div class="outline-text-3" id="text-4-2"> <p> Let’s first identify the transmissibility and compliance in the open-loop case. </p> <div class="org-src-container"> <pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); [T_ol, T_norm_ol, freqs] = computeTransmissibility(); [C_ol, C_norm_ol, freqs] = computeCompliance(); </pre> </div> <p> Now, let’s identify the transmissibility and compliance for the Integral Force Feedback architecture. </p> <div class="org-src-container"> <pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'iff'</span>); K_iff = (1e4<span class="org-type">/</span>s)<span class="org-type">*</span>eye(6); [T_iff, T_norm_iff, <span class="org-type">~</span>] = computeTransmissibility(); [C_iff, C_norm_iff, <span class="org-type">~</span>] = computeCompliance(); </pre> </div> <p> And for the Direct Velocity Feedback. </p> <div class="org-src-container"> <pre class="src src-matlab">controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'dvf'</span>); K_dvf = 1e4<span class="org-type">*</span>s<span class="org-type">/</span>(1<span class="org-type">+</span>s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>5000)<span class="org-type">*</span>eye(6); [T_dvf, T_norm_dvf, <span class="org-type">~</span>] = computeTransmissibility(); [C_dvf, C_norm_dvf, <span class="org-type">~</span>] = computeCompliance(); </pre> </div> </div> </div> <div id="outline-container-orgd30c62d" class="outline-3"> <h3 id="orgd30c62d"><span class="section-number-3">4.3</span> Results</h3> <div class="outline-text-3" id="text-4-3"> <div id="org6691389" class="figure"> <p><img src="figs/transmissibility_iff_dvf.png" alt="transmissibility_iff_dvf.png" /> </p> <p><span class="figure-number">Figure 11: </span>Obtained transmissibility for Open-Loop Control (Blue), Integral Force Feedback (Red) and Direct Velocity Feedback (Yellow) (<a href="./figs/transmissibility_iff_dvf.png">png</a>, <a href="./figs/transmissibility_iff_dvf.pdf">pdf</a>)</p> </div> <div id="orgd29218a" class="figure"> <p><img src="figs/compliance_iff_dvf.png" alt="compliance_iff_dvf.png" /> </p> <p><span class="figure-number">Figure 12: </span>Obtained compliance for Open-Loop Control (Blue), Integral Force Feedback (Red) and Direct Velocity Feedback (Yellow) (<a href="./figs/compliance_iff_dvf.png">png</a>, <a href="./figs/compliance_iff_dvf.pdf">pdf</a>)</p> </div> <div id="org2ee9711" class="figure"> <p><img src="figs/frobenius_norm_T_C_iff_dvf.png" alt="frobenius_norm_T_C_iff_dvf.png" /> </p> <p><span class="figure-number">Figure 13: </span>Frobenius norm of the Transmissibility and Compliance Matrices (<a href="./figs/frobenius_norm_T_C_iff_dvf.png">png</a>, <a href="./figs/frobenius_norm_T_C_iff_dvf.pdf">pdf</a>)</p> </div> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2020-03-02 lun. 17:57</p> </div> </body> </html>