%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); simulinkproject('./'); open('simulink/stewart_active_damping.slx') % Identification of the Dynamics with perfect Joints % We first initialize the Stewart platform without joint stiffness. stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'disable', true); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); % And we identify the dynamics from force actuators to force sensors. %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_active_damping'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensor Outputs [N] %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'}; % The transfer function from actuator forces to force sensors is shown in Figure [[fig:iff_plant_coupling]]. freqs = logspace(1, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 2:6 set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(G(['Fm', num2str(i)], 'F1'), freqs, 'Hz')))); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G('Fm1', 'F1'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 2:6 set(gca,'ColorOrderIndex',2); p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Fm', num2str(i)], 'F1'), freqs, 'Hz')))); end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Fm1', 'F1'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2], {'$F_{m,i}/F_i$', '$F_{m,j}/F_i$'}) linkaxes([ax1,ax2],'x'); % Effect of the Flexible Joint stiffness on the Dynamics % We add some stiffness and damping in the flexible joints and we re-identify the dynamics. stewart = initializeJointDynamics(stewart); Gf = linearize(mdl, io, options); Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; Gf.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'}; % The new dynamics from force actuator to force sensor is shown in Figure [[fig:iff_plant_flexible_joint_decentralized]]. freqs = logspace(1, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Fm1', 'F1'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gf('Fm1', 'F1'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Fm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints'); plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Fm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'southwest') linkaxes([ax1,ax2],'x'); % Obtained Damping % The control is a performed in a decentralized manner. % The $6 \times 6$ control is a diagonal matrix with pure integration action on the diagonal: % \[ K(s) = g % \begin{bmatrix} % \frac{1}{s} & & 0 \\ % & \ddots & \\ % 0 & & \frac{1}{s} % \end{bmatrix} \] % The root locus is shown in figure [[fig:root_locus_iff_rot_stiffness]] and the obtained pole damping function of the control gain is shown in figure [[fig:pole_damping_gain_iff_rot_stiffness]]. gains = logspace(0, 5, 1000); figure; hold on; plot(real(pole(G)), imag(pole(G)), 'x'); plot(real(pole(Gf)), imag(pole(Gf)), 'x'); set(gca,'ColorOrderIndex',1); plot(real(tzero(G)), imag(tzero(G)), 'o'); plot(real(tzero(Gf)), imag(tzero(Gf)), 'o'); for i = 1:length(gains) cl_poles = pole(feedback(G, (gains(i)/s)*eye(6))); set(gca,'ColorOrderIndex',1); plot(real(cl_poles), imag(cl_poles), '.'); cl_poles = pole(feedback(Gf, (gains(i)/s)*eye(6))); set(gca,'ColorOrderIndex',2); plot(real(cl_poles), imag(cl_poles), '.'); end ylim([0,inf]); xlim([-3000,0]); xlabel('Real Part') ylabel('Imaginary Part') axis square % #+name: fig:root_locus_iff_rot_stiffness % #+caption: Root Locus plot with Decentralized Integral Force Feedback when considering the stiffness of flexible joints ([[./figs/root_locus_iff_rot_stiffness.png][png]], [[./figs/root_locus_iff_rot_stiffness.pdf][pdf]]) % [[file:figs/root_locus_iff_rot_stiffness.png]] gains = logspace(0, 5, 1000); figure; hold on; for i = 1:length(gains) set(gca,'ColorOrderIndex',1); cl_poles = pole(feedback(G, (gains(i)/s)*eye(6))); poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2; plot(gains(i)*ones(size(poles_damp)), poles_damp, '.'); set(gca,'ColorOrderIndex',2); cl_poles = pole(feedback(Gf, (gains(i)/s)*eye(6))); poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2; plot(gains(i)*ones(size(poles_damp)), poles_damp, '.'); end xlabel('Control Gain'); ylabel('Damping of the Poles'); set(gca, 'XScale', 'log'); ylim([0,pi/2]);