#+TITLE: Stewart Platform with Simscape :DRAWER: #+STARTUP: overview #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+LATEX_CLASS: cleanreport #+LaTeX_CLASS_OPTIONS: [tocnp, secbreak, minted] #+LaTeX_HEADER: \newcommand{\authorFirstName}{Thomas} #+LaTeX_HEADER: \newcommand{\authorLastName}{Dehaeze} #+LaTeX_HEADER: \newcommand{\authorEmail}{dehaeze.thomas@gmail.com} #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :mkdirp yes :END: #+begin_src matlab :results none <> addpath('src'); addpath('library'); #+end_src #+begin_src matlab :results none open stewart_identification #+end_src #+begin_src matlab :results output initializeSample(struct('mass', 50)); initializeHexapod(struct('actuator', 'piezo')); #+end_src #+RESULTS: : initializeSample(struct('mass', 50)); : initializeHexapod(struct('actuator', 'piezo')); #+begin_src matlab G = identifyPlant(); #+end_src #+RESULTS: * Functions :PROPERTIES: :HEADER-ARGS:matlab+: :exports code :HEADER-ARGS:matlab+: :comments no :HEADER-ARGS:matlab+: :mkdir yes :HEADER-ARGS:matlab+: :eval no :END: ** getMaxPositions :PROPERTIES: :HEADER-ARGS:matlab+: :tangle src/getMaxPositions.m :END: #+begin_src matlab function [X, Y, Z] = getMaxPositions(stewart) Leg = stewart.Leg; J = stewart.J; theta = linspace(0, 2*pi, 100); phi = linspace(-pi/2 , pi/2, 100); dmax = zeros(length(theta), length(phi)); for i = 1:length(theta) for j = 1:length(phi) L = J*[cos(phi(j))*cos(theta(i)) cos(phi(j))*sin(theta(i)) sin(phi(j)) 0 0 0]'; dmax(i, j) = Leg.stroke/max(abs(L)); end end X = dmax.*cos(repmat(phi,length(theta),1)).*cos(repmat(theta,length(phi),1))'; Y = dmax.*cos(repmat(phi,length(theta),1)).*sin(repmat(theta,length(phi),1))'; Z = dmax.*sin(repmat(phi,length(theta),1)); end #+end_src ** getMaxPureDisplacement :PROPERTIES: :HEADER-ARGS:matlab+: :tangle src/getMaxPureDisplacement.m :END: #+begin_src matlab function [max_disp] = getMaxPureDisplacement(Leg, J) max_disp = zeros(6, 1); max_disp(1) = Leg.stroke/max(abs(J*[1 0 0 0 0 0]')); max_disp(2) = Leg.stroke/max(abs(J*[0 1 0 0 0 0]')); max_disp(3) = Leg.stroke/max(abs(J*[0 0 1 0 0 0]')); max_disp(4) = Leg.stroke/max(abs(J*[0 0 0 1 0 0]')); max_disp(5) = Leg.stroke/max(abs(J*[0 0 0 0 1 0]')); max_disp(6) = Leg.stroke/max(abs(J*[0 0 0 0 0 1]')); end #+end_src ** getStiffnessMatrix :PROPERTIES: :HEADER-ARGS:matlab+: :tangle src/getStiffnessMatrix.m :END: #+begin_src matlab function [K] = getStiffnessMatrix(k, J) % k - leg stiffness % J - Jacobian matrix K = k*(J'*J); end #+end_src ** identifyPlant :PROPERTIES: :HEADER-ARGS:matlab+: :tangle src/identifyPlant.m :END: #+begin_src matlab function [sys] = identifyPlant(opts_param) %% Default values for opts opts = struct(); %% Populate opts with input parameters if exist('opts_param','var') for opt = fieldnames(opts_param)' opts.(opt{1}) = opts_param.(opt{1}); end end %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_identification'; %% Input/Output definition io(1) = linio([mdl, '/F'], 1, 'input'); % Cartesian forces io(2) = linio([mdl, '/Fl'], 1, 'input'); % Leg forces io(3) = linio([mdl, '/Fd'], 1, 'input'); % Direct forces io(4) = linio([mdl, '/Dw'], 1, 'input'); % Base motion io(5) = linio([mdl, '/Dm'], 1, 'output'); % Relative Motion io(6) = linio([mdl, '/Dlm'], 1, 'output'); % Displacement of each leg io(7) = linio([mdl, '/Flm'], 1, 'output'); % Force sensor in each leg io(8) = linio([mdl, '/Xm'], 1, 'output'); % Absolute motion of platform %% Run the linearization G = linearize(mdl, io, 0); %% Input/Output names G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz', ... 'F1', 'F2', 'F3', 'F4', 'F5', 'F6', ... 'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz', ... 'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'}; G.OutputName = {'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm', ... 'D1m', 'D2m', 'D3m', 'D4m', 'D5m', 'D6m', ... 'F1m', 'F2m', 'F3m', 'F4m', 'F5m', 'F6m', ... 'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'}; %% Cut into sub transfer functions sys.G_cart = minreal(G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'})); sys.G_forc = minreal(G({'F1m', 'F2m', 'F3m', 'F4m', 'F5m', 'F6m'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'})); sys.G_legs = G({'D1m', 'D2m', 'D3m', 'D4m', 'D5m', 'D6m'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); sys.G_tran = minreal(G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'})); sys.G_comp = minreal(G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'})); sys.G_iner = minreal(G({'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'}, {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'})); sys.G_all = minreal(G); end #+end_src ** initializeHexapod :PROPERTIES: :HEADER-ARGS:matlab+: :tangle src/initializeHexapod.m :END: The =initializeHexapod= function takes one structure that contains configurations for the hexapod and returns one structure representing the hexapod. #+begin_src matlab function [stewart] = initializeHexapod(opts_param) #+end_src Default values for opts #+begin_src matlab opts = struct(... 'height', 90, ... % Height of the platform [mm] 'jacobian', 150, ... % Jacobian offset [mm] 'density', 8000, ... % Density of hexapod [mm] 'name', 'stewart' ... % Name of the file ); #+end_src Populate opts with input parameters #+begin_src matlab if exist('opts_param','var') for opt = fieldnames(opts_param)' opts.(opt{1}) = opts_param.(opt{1}); end end #+end_src Stewart Object #+begin_src matlab stewart = struct(); stewart.h = opts.height; % Total height of the platform [mm] stewart.jacobian = opts.jacobian; % Distance from the center of the top platform % where the jacobian is computed [mm] #+end_src Bottom Plate #+begin_src matlab BP = struct(); BP.rad.int = 0; % Internal Radius [mm] BP.rad.ext = 150; % External Radius [mm] BP.thickness = 10; % Thickness [mm] BP.leg.rad = 100; % Radius where the legs articulations are positionned [mm] BP.leg.ang = 45; % Angle Offset [deg] BP.density = opts.density; % Density of the material [kg/m3] BP.color = [0.7 0.7 0.7]; % Color [rgb] BP.shape = [BP.rad.int BP.thickness; BP.rad.int 0; BP.rad.ext 0; BP.rad.ext BP.thickness]; #+end_src Top Plate #+begin_src matlab TP = struct(); TP.rad.int = 0; % Internal Radius [mm] TP.rad.ext = 100; % Internal Radius [mm] TP.thickness = 10; % Thickness [mm] TP.leg.rad = 90; % Radius where the legs articulations are positionned [mm] TP.leg.ang = 45; % Angle Offset [deg] TP.density = opts.density; % Density of the material [kg/m3] TP.color = [0.7 0.7 0.7]; % Color [rgb] TP.shape = [TP.rad.int TP.thickness; TP.rad.int 0; TP.rad.ext 0; TP.rad.ext TP.thickness]; #+end_src Leg #+begin_src matlab Leg = struct(); Leg.stroke = 80e-6; % Maximum Stroke of each leg [m] if strcmp(opts.actuator, 'piezo') Leg.k.ax = 1e7; % Stiffness of each leg [N/m] Leg.c.ax = 500; % [N/(m/s)] elseif strcmp(opts.actuator, 'lorentz') Leg.k.ax = 1e4; % Stiffness of each leg [N/m] Leg.c.ax = 200; % [N/(m/s)] elseif isnumeric(opts.actuator) Leg.k.ax = opts.actuator; % Stiffness of each leg [N/m] Leg.c.ax = 100; % [N/(m/s)] else error('opts.actuator should be piezo or lorentz or numeric value'); end Leg.rad.bottom = 12; % Radius of the cylinder of the bottom part [mm] Leg.rad.top = 10; % Radius of the cylinder of the top part [mm] Leg.density = opts.density; % Density of the material [kg/m3] Leg.color.bottom = [0.5 0.5 0.5]; % Color [rgb] Leg.color.top = [0.5 0.5 0.5]; % Color [rgb] Leg.sphere.bottom = Leg.rad.bottom; % Size of the sphere at the end of the leg [mm] Leg.sphere.top = Leg.rad.top; % Size of the sphere at the end of the leg [mm] #+end_src Sphere #+begin_src matlab SP = struct(); SP.height.bottom = 15; % [mm] SP.height.top = 15; % [mm] SP.density.bottom = opts.density; % [kg/m^3] SP.density.top = opts.density; % [kg/m^3] SP.color.bottom = [0.7 0.7 0.7]; % [rgb] SP.color.top = [0.7 0.7 0.7]; % [rgb] SP.k.ax = 0; % [N*m/deg] SP.c.ax = 0; % [N*m/deg] SP.thickness.bottom = SP.height.bottom-Leg.sphere.bottom; % [mm] SP.thickness.top = SP.height.top-Leg.sphere.top; % [mm] SP.rad.bottom = Leg.sphere.bottom; % [mm] SP.rad.top = Leg.sphere.top; % [mm] %% Leg.support.bottom = [0 SP.thickness.bottom; 0 0; SP.rad.bottom 0; SP.rad.bottom SP.height.bottom]; Leg.support.top = [0 SP.thickness.top; 0 0; SP.rad.top 0; SP.rad.top SP.height.top]; %% stewart.BP = BP; stewart.TP = TP; stewart.Leg = Leg; stewart.SP = SP; %% stewart = initializeParameters(stewart); %% save('./mat/stewart.mat', 'stewart') #+end_src Additional Functions #+begin_src matlab %% Initialize Parameters function [stewart] = initializeParameters(stewart) %% Connection points on base and top plate w.r.t. World frame at the center of the base plate stewart.pos_base = zeros(6, 3); stewart.pos_top = zeros(6, 3); alpha_b = stewart.BP.leg.ang*pi/180; % angle de décalage par rapport à 120 deg (pour positionner les supports bases) alpha_t = stewart.TP.leg.ang*pi/180; % +- offset angle from 120 degree spacing on top % Height [m] TODO height = (stewart.h-stewart.BP.thickness-stewart.TP.thickness-stewart.Leg.sphere.bottom-stewart.Leg.sphere.top-stewart.SP.thickness.bottom-stewart.SP.thickness.top)*0.001; radius_b = stewart.BP.leg.rad*0.001; % rayon emplacement support base radius_t = stewart.TP.leg.rad*0.001; % top radius in meters for i = 1:3 % base points angle_m_b = (2*pi/3)* (i-1) - alpha_b; angle_p_b = (2*pi/3)* (i-1) + alpha_b; stewart.pos_base(2*i-1,:) = [radius_b*cos(angle_m_b), radius_b*sin(angle_m_b), 0.0]; stewart.pos_base(2*i,:) = [radius_b*cos(angle_p_b), radius_b*sin(angle_p_b), 0.0]; % top points % Top points are 60 degrees offset angle_m_t = (2*pi/3)* (i-1) - alpha_t + 2*pi/6; angle_p_t = (2*pi/3)* (i-1) + alpha_t + 2*pi/6; stewart.pos_top(2*i-1,:) = [radius_t*cos(angle_m_t), radius_t*sin(angle_m_t), height]; stewart.pos_top(2*i,:) = [radius_t*cos(angle_p_t), radius_t*sin(angle_p_t), height]; end % permute pos_top points so that legs are end points of base and top points stewart.pos_top = [stewart.pos_top(6,:); stewart.pos_top(1:5,:)]; %6th point on top connects to 1st on bottom stewart.pos_top_tranform = stewart.pos_top - height*[zeros(6, 2),ones(6, 1)]; %% leg vectors legs = stewart.pos_top - stewart.pos_base; leg_length = zeros(6, 1); leg_vectors = zeros(6, 3); for i = 1:6 leg_length(i) = norm(legs(i,:)); leg_vectors(i,:) = legs(i,:) / leg_length(i); end stewart.Leg.lenght = 1000*leg_length(1)/1.5; stewart.Leg.shape.bot = [0 0; ... stewart.Leg.rad.bottom 0; ... stewart.Leg.rad.bottom stewart.Leg.lenght; ... stewart.Leg.rad.top stewart.Leg.lenght; ... stewart.Leg.rad.top 0.2*stewart.Leg.lenght; ... 0 0.2*stewart.Leg.lenght]; %% Calculate revolute and cylindrical axes rev1 = zeros(6, 3); rev2 = zeros(6, 3); cyl1 = zeros(6, 3); for i = 1:6 rev1(i,:) = cross(leg_vectors(i,:), [0 0 1]); rev1(i,:) = rev1(i,:) / norm(rev1(i,:)); rev2(i,:) = - cross(rev1(i,:), leg_vectors(i,:)); rev2(i,:) = rev2(i,:) / norm(rev2(i,:)); cyl1(i,:) = leg_vectors(i,:); end %% Coordinate systems stewart.lower_leg = struct('rotation', eye(3)); stewart.upper_leg = struct('rotation', eye(3)); for i = 1:6 stewart.lower_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)']; stewart.upper_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)']; end %% Position Matrix % TODO stewart.M_pos_base = stewart.pos_base + (height+(stewart.TP.thickness+stewart.Leg.sphere.top+stewart.SP.thickness.top+stewart.jacobian)*1e-3)*[zeros(6, 2),ones(6, 1)]; %% Compute Jacobian Matrix % TODO % aa = stewart.pos_top_tranform + (stewart.jacobian - stewart.TP.thickness - stewart.SP.height.top)*1e-3*[zeros(6, 2),ones(6, 1)]; bb = stewart.pos_top_tranform - (stewart.TP.thickness + stewart.SP.height.top)*1e-3*[zeros(6, 2),ones(6, 1)]; bb = bb - stewart.jacobian*1e-3*[zeros(6, 2),ones(6, 1)]; stewart.J = getJacobianMatrix(leg_vectors', bb'); stewart.K = stewart.Leg.k.ax*stewart.J'*stewart.J; end #+end_src Compute the Jacobian Matrix #+begin_src matlab function J = getJacobianMatrix(RM, M_pos_base) % RM - [3x6] unit vector of each leg in the fixed frame % M_pos_base - [3x6] vector of the leg connection at the top platform location in the fixed frame J = zeros(6); J(:, 1:3) = RM'; J(:, 4:6) = cross(M_pos_base, RM)'; end end #+end_src ** initializeSample :PROPERTIES: :HEADER-ARGS:matlab+: :tangle src/initializeSample.m :END: #+begin_src matlab function [] = initializeSample(opts_param) %% Default values for opts sample = struct( ... 'radius', 100, ... % radius of the cylinder [mm] 'height', 300, ... % height of the cylinder [mm] 'mass', 50, ... % mass of the cylinder [kg] 'measheight', 150, ... % measurement point z-offset [mm] 'offset', [0, 0, 0], ... % offset position of the sample [mm] 'color', [0.9 0.1 0.1] ... ); %% Populate opts with input parameters if exist('opts_param','var') for opt = fieldnames(opts_param)' sample.(opt{1}) = opts_param.(opt{1}); end end %% Save save('./mat/sample.mat', 'sample'); end #+end_src