<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-02-06 jeu. 15:39 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Stewart Platform - Decentralized Active Damping</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<style type="text/css">
 <!--/*--><![CDATA[/*><!--*/
  .title  { text-align: center;
             margin-bottom: .2em; }
  .subtitle { text-align: center;
              font-size: medium;
              font-weight: bold;
              margin-top:0; }
  .todo   { font-family: monospace; color: red; }
  .done   { font-family: monospace; color: green; }
  .priority { font-family: monospace; color: orange; }
  .tag    { background-color: #eee; font-family: monospace;
            padding: 2px; font-size: 80%; font-weight: normal; }
  .timestamp { color: #bebebe; }
  .timestamp-kwd { color: #5f9ea0; }
  .org-right  { margin-left: auto; margin-right: 0px;  text-align: right; }
  .org-left   { margin-left: 0px;  margin-right: auto; text-align: left; }
  .org-center { margin-left: auto; margin-right: auto; text-align: center; }
  .underline { text-decoration: underline; }
  #postamble p, #preamble p { font-size: 90%; margin: .2em; }
  p.verse { margin-left: 3%; }
  pre {
    border: 1px solid #ccc;
    box-shadow: 3px 3px 3px #eee;
    padding: 8pt;
    font-family: monospace;
    overflow: auto;
    margin: 1.2em;
  }
  pre.src {
    position: relative;
    overflow: visible;
    padding-top: 1.2em;
  }
  pre.src:before {
    display: none;
    position: absolute;
    background-color: white;
    top: -10px;
    right: 10px;
    padding: 3px;
    border: 1px solid black;
  }
  pre.src:hover:before { display: inline;}
  /* Languages per Org manual */
  pre.src-asymptote:before { content: 'Asymptote'; }
  pre.src-awk:before { content: 'Awk'; }
  pre.src-C:before { content: 'C'; }
  /* pre.src-C++ doesn't work in CSS */
  pre.src-clojure:before { content: 'Clojure'; }
  pre.src-css:before { content: 'CSS'; }
  pre.src-D:before { content: 'D'; }
  pre.src-ditaa:before { content: 'ditaa'; }
  pre.src-dot:before { content: 'Graphviz'; }
  pre.src-calc:before { content: 'Emacs Calc'; }
  pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
  pre.src-fortran:before { content: 'Fortran'; }
  pre.src-gnuplot:before { content: 'gnuplot'; }
  pre.src-haskell:before { content: 'Haskell'; }
  pre.src-hledger:before { content: 'hledger'; }
  pre.src-java:before { content: 'Java'; }
  pre.src-js:before { content: 'Javascript'; }
  pre.src-latex:before { content: 'LaTeX'; }
  pre.src-ledger:before { content: 'Ledger'; }
  pre.src-lisp:before { content: 'Lisp'; }
  pre.src-lilypond:before { content: 'Lilypond'; }
  pre.src-lua:before { content: 'Lua'; }
  pre.src-matlab:before { content: 'MATLAB'; }
  pre.src-mscgen:before { content: 'Mscgen'; }
  pre.src-ocaml:before { content: 'Objective Caml'; }
  pre.src-octave:before { content: 'Octave'; }
  pre.src-org:before { content: 'Org mode'; }
  pre.src-oz:before { content: 'OZ'; }
  pre.src-plantuml:before { content: 'Plantuml'; }
  pre.src-processing:before { content: 'Processing.js'; }
  pre.src-python:before { content: 'Python'; }
  pre.src-R:before { content: 'R'; }
  pre.src-ruby:before { content: 'Ruby'; }
  pre.src-sass:before { content: 'Sass'; }
  pre.src-scheme:before { content: 'Scheme'; }
  pre.src-screen:before { content: 'Gnu Screen'; }
  pre.src-sed:before { content: 'Sed'; }
  pre.src-sh:before { content: 'shell'; }
  pre.src-sql:before { content: 'SQL'; }
  pre.src-sqlite:before { content: 'SQLite'; }
  /* additional languages in org.el's org-babel-load-languages alist */
  pre.src-forth:before { content: 'Forth'; }
  pre.src-io:before { content: 'IO'; }
  pre.src-J:before { content: 'J'; }
  pre.src-makefile:before { content: 'Makefile'; }
  pre.src-maxima:before { content: 'Maxima'; }
  pre.src-perl:before { content: 'Perl'; }
  pre.src-picolisp:before { content: 'Pico Lisp'; }
  pre.src-scala:before { content: 'Scala'; }
  pre.src-shell:before { content: 'Shell Script'; }
  pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
  /* additional language identifiers per "defun org-babel-execute"
       in ob-*.el */
  pre.src-cpp:before  { content: 'C++'; }
  pre.src-abc:before  { content: 'ABC'; }
  pre.src-coq:before  { content: 'Coq'; }
  pre.src-groovy:before  { content: 'Groovy'; }
  /* additional language identifiers from org-babel-shell-names in
     ob-shell.el: ob-shell is the only babel language using a lambda to put
     the execution function name together. */
  pre.src-bash:before  { content: 'bash'; }
  pre.src-csh:before  { content: 'csh'; }
  pre.src-ash:before  { content: 'ash'; }
  pre.src-dash:before  { content: 'dash'; }
  pre.src-ksh:before  { content: 'ksh'; }
  pre.src-mksh:before  { content: 'mksh'; }
  pre.src-posh:before  { content: 'posh'; }
  /* Additional Emacs modes also supported by the LaTeX listings package */
  pre.src-ada:before { content: 'Ada'; }
  pre.src-asm:before { content: 'Assembler'; }
  pre.src-caml:before { content: 'Caml'; }
  pre.src-delphi:before { content: 'Delphi'; }
  pre.src-html:before { content: 'HTML'; }
  pre.src-idl:before { content: 'IDL'; }
  pre.src-mercury:before { content: 'Mercury'; }
  pre.src-metapost:before { content: 'MetaPost'; }
  pre.src-modula-2:before { content: 'Modula-2'; }
  pre.src-pascal:before { content: 'Pascal'; }
  pre.src-ps:before { content: 'PostScript'; }
  pre.src-prolog:before { content: 'Prolog'; }
  pre.src-simula:before { content: 'Simula'; }
  pre.src-tcl:before { content: 'tcl'; }
  pre.src-tex:before { content: 'TeX'; }
  pre.src-plain-tex:before { content: 'Plain TeX'; }
  pre.src-verilog:before { content: 'Verilog'; }
  pre.src-vhdl:before { content: 'VHDL'; }
  pre.src-xml:before { content: 'XML'; }
  pre.src-nxml:before { content: 'XML'; }
  /* add a generic configuration mode; LaTeX export needs an additional
     (add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
  pre.src-conf:before { content: 'Configuration File'; }

  table { border-collapse:collapse; }
  caption.t-above { caption-side: top; }
  caption.t-bottom { caption-side: bottom; }
  td, th { vertical-align:top;  }
  th.org-right  { text-align: center;  }
  th.org-left   { text-align: center;   }
  th.org-center { text-align: center; }
  td.org-right  { text-align: right;  }
  td.org-left   { text-align: left;   }
  td.org-center { text-align: center; }
  dt { font-weight: bold; }
  .footpara { display: inline; }
  .footdef  { margin-bottom: 1em; }
  .figure { padding: 1em; }
  .figure p { text-align: center; }
  .equation-container {
    display: table;
    text-align: center;
    width: 100%;
  }
  .equation {
    vertical-align: middle;
  }
  .equation-label {
    display: table-cell;
    text-align: right;
    vertical-align: middle;
  }
  .inlinetask {
    padding: 10px;
    border: 2px solid gray;
    margin: 10px;
    background: #ffffcc;
  }
  #org-div-home-and-up
   { text-align: right; font-size: 70%; white-space: nowrap; }
  textarea { overflow-x: auto; }
  .linenr { font-size: smaller }
  .code-highlighted { background-color: #ffff00; }
  .org-info-js_info-navigation { border-style: none; }
  #org-info-js_console-label
    { font-size: 10px; font-weight: bold; white-space: nowrap; }
  .org-info-js_search-highlight
    { background-color: #ffff00; color: #000000; font-weight: bold; }
  .org-svg { width: 90%; }
  /*]]>*/-->
</style>
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<script src="./js/jquery.min.js"></script>
<script src="./js/bootstrap.min.js"></script>
<script src="./js/jquery.stickytableheaders.min.js"></script>
<script src="./js/readtheorg.js"></script>
<script type="text/javascript">
/*
@licstart  The following is the entire license notice for the
JavaScript code in this tag.

Copyright (C) 2012-2020 Free Software Foundation, Inc.

The JavaScript code in this tag is free software: you can
redistribute it and/or modify it under the terms of the GNU
General Public License (GNU GPL) as published by the Free Software
Foundation, either version 3 of the License, or (at your option)
any later version.  The code is distributed WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.  See the GNU GPL for more details.

As additional permission under GNU GPL version 3 section 7, you
may distribute non-source (e.g., minimized or compacted) forms of
that code without the copy of the GNU GPL normally required by
section 4, provided you include this license notice and a URL
through which recipients can access the Corresponding Source.


@licend  The above is the entire license notice
for the JavaScript code in this tag.
*/
<!--/*--><![CDATA[/*><!--*/
 function CodeHighlightOn(elem, id)
 {
   var target = document.getElementById(id);
   if(null != target) {
     elem.cacheClassElem = elem.className;
     elem.cacheClassTarget = target.className;
     target.className = "code-highlighted";
     elem.className   = "code-highlighted";
   }
 }
 function CodeHighlightOff(elem, id)
 {
   var target = document.getElementById(id);
   if(elem.cacheClassElem)
     elem.className = elem.cacheClassElem;
   if(elem.cacheClassTarget)
     target.className = elem.cacheClassTarget;
 }
/*]]>*///-->
</script>
<script>
      MathJax = {
          tex: { macros: {
                  bm: ["\\boldsymbol{#1}",1],
                  }
              }
          };
          </script>
          <script type="text/javascript"
          src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
 <a accesskey="h" href="./index.html"> UP </a>
 |
 <a accesskey="H" href="./index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Stewart Platform - Decentralized Active Damping</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#orgfba33d4">1. Inertial Control</a>
<ul>
<li><a href="#org0ea4bd4">1.1. Identification of the Dynamics</a></li>
<li><a href="#org5a29480">1.2. Effect of the Flexible Joint stiffness on the Dynamics</a></li>
<li><a href="#orga92be75">1.3. Obtained Damping</a></li>
<li><a href="#orgb29f377">1.4. Conclusion</a></li>
</ul>
</li>
<li><a href="#org5fde56d">2. Integral Force Feedback</a>
<ul>
<li><a href="#org8823e64">2.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#org2aff899">2.2. Effect of the Flexible Joint stiffness on the Dynamics</a></li>
<li><a href="#org40dffdd">2.3. Obtained Damping</a></li>
<li><a href="#org2ae5aaf">2.4. Conclusion</a></li>
</ul>
</li>
<li><a href="#org9425768">3. Direct Velocity Feedback</a>
<ul>
<li><a href="#org61043ac">3.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#org8f71141">3.2. Effect of the Flexible Joint stiffness on the Dynamics</a></li>
<li><a href="#org87c6911">3.3. Obtained Damping</a></li>
<li><a href="#org516fed1">3.4. Conclusion</a></li>
</ul>
</li>
</ul>
</div>
</div>

<p>
The following decentralized active damping techniques are briefly studied:
</p>
<ul class="org-ul">
<li>Inertial Control (proportional feedback of the absolute velocity): Section <a href="#org3c68d9e">1</a></li>
<li>Integral Force Feedback: Section <a href="#org62cd19c">2</a></li>
<li>Direct feedback of the relative velocity of each strut: Section <a href="#org587277a">3</a></li>
</ul>

<div id="outline-container-orgfba33d4" class="outline-2">
<h2 id="orgfba33d4"><span class="section-number-2">1</span> Inertial Control</h2>
<div class="outline-text-2" id="text-1">
<p>
<a id="org3c68d9e"></a>
</p>
</div>

<div id="outline-container-org0ea4bd4" class="outline-3">
<h3 id="org0ea4bd4"><span class="section-number-3">1.1</span> Identification of the Dynamics</h3>
<div class="outline-text-3" id="text-1-1">
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeFramesPositions(<span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'disable'</span>, <span class="org-constant">true</span>);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
</pre>
</div>

<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;

<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_active_damping'</span>;

<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/F'</span>],   1, <span class="org-string">'openinput'</span>);  io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Vm'</span>],  1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute velocity of each leg [m/s]</span>

<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, options);
G.InputName  = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>};
</pre>
</div>

<p>
The transfer function from actuator forces to force sensors is shown in Figure <a href="#orgfc5367b">1</a>.
</p>

<div id="orgfc5367b" class="figure">
<p><img src="figs/inertial_plant_coupling.png" alt="inertial_plant_coupling.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Transfer function from the Actuator force \(F_{i}\) to the absolute velocity of the same leg \(v_{m,i}\) and to the absolute velocity of the other legs \(v_{m,j}\) with \(i \neq j\) in grey (<a href="./figs/inertial_plant_coupling.png">png</a>, <a href="./figs/inertial_plant_coupling.pdf">pdf</a>)</p>
</div>
</div>
</div>

<div id="outline-container-org5a29480" class="outline-3">
<h3 id="org5a29480"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness on the Dynamics</h3>
<div class="outline-text-3" id="text-1-2">
<p>
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart);
Gf = linearize(mdl, io, options);
Gf.InputName  = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Gf.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>};
</pre>
</div>

<p>
The new dynamics from force actuator to force sensor is shown in Figure <a href="#org2ee5d65">2</a>.
</p>

<div id="org2ee5d65" class="figure">
<p><img src="figs/inertial_plant_flexible_joint_decentralized.png" alt="inertial_plant_flexible_joint_decentralized.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Transfer function from the Actuator force \(F_{i}\) to the absolute velocity sensor \(v_{m,i}\) (<a href="./figs/inertial_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/inertial_plant_flexible_joint_decentralized.pdf">pdf</a>)</p>
</div>
</div>
</div>

<div id="outline-container-orga92be75" class="outline-3">
<h3 id="orga92be75"><span class="section-number-3">1.3</span> Obtained Damping</h3>
<div class="outline-text-3" id="text-1-3">
<p>
The control is a performed in a decentralized manner.
The \(6 \times 6\) control is a diagonal matrix with pure proportional action on the diagonal:
\[ K(s) = g
  \begin{bmatrix}
    1 & & 0 \\
    & \ddots & \\
    0 & & 1
  \end{bmatrix} \]
</p>

<p>
The root locus is shown in figure <a href="#org78a599c">3</a> and the obtained pole damping function of the control gain is shown in figure <a href="#org0b6bb28">4</a>.
</p>

<div id="org78a599c" class="figure">
<p><img src="figs/root_locus_inertial_rot_stiffness.png" alt="root_locus_inertial_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Root Locus plot with Decentralized Inertial Control when considering the stiffness of flexible joints (<a href="./figs/root_locus_inertial_rot_stiffness.png">png</a>, <a href="./figs/root_locus_inertial_rot_stiffness.pdf">pdf</a>)</p>
</div>


<div id="org0b6bb28" class="figure">
<p><img src="figs/pole_damping_gain_inertial_rot_stiffness.png" alt="pole_damping_gain_inertial_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Damping of the poles with respect to the gain of the Decentralized Inertial Control when considering the stiffness of flexible joints (<a href="./figs/pole_damping_gain_inertial_rot_stiffness.png">png</a>, <a href="./figs/pole_damping_gain_inertial_rot_stiffness.pdf">pdf</a>)</p>
</div>
</div>
</div>

<div id="outline-container-orgb29f377" class="outline-3">
<h3 id="orgb29f377"><span class="section-number-3">1.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-1-4">
<div class="important">
<p>
Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors.
</p>

</div>
</div>
</div>
</div>

<div id="outline-container-org5fde56d" class="outline-2">
<h2 id="org5fde56d"><span class="section-number-2">2</span> Integral Force Feedback</h2>
<div class="outline-text-2" id="text-2">
<p>
<a id="org62cd19c"></a>
</p>
</div>

<div id="outline-container-org8823e64" class="outline-3">
<h3 id="org8823e64"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3>
<div class="outline-text-3" id="text-2-1">
<p>
We first initialize the Stewart platform without joint stiffness.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeFramesPositions(<span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'disable'</span>, <span class="org-constant">true</span>);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
</pre>
</div>

<p>
And we identify the dynamics from force actuators to force sensors.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;

<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_active_damping'</span>;

<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/F'</span>],   1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Fm'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Force Sensor Outputs [N]</span>

<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, options);
G.InputName  = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
</pre>
</div>

<p>
The transfer function from actuator forces to force sensors is shown in Figure <a href="#orgae4e327">5</a>.
</p>

<div id="orgae4e327" class="figure">
<p><img src="figs/iff_plant_coupling.png" alt="iff_plant_coupling.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Transfer function from the Actuator force \(F_{i}\) to the Force sensor of the same leg \(F_{m,i}\) and to the force sensor of the other legs \(F_{m,j}\) with \(i \neq j\) in grey (<a href="./figs/iff_plant_coupling.png">png</a>, <a href="./figs/iff_plant_coupling.pdf">pdf</a>)</p>
</div>
</div>
</div>

<div id="outline-container-org2aff899" class="outline-3">
<h3 id="org2aff899"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness on the Dynamics</h3>
<div class="outline-text-3" id="text-2-2">
<p>
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart);
Gf = linearize(mdl, io, options);
Gf.InputName  = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Gf.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
</pre>
</div>

<p>
The new dynamics from force actuator to force sensor is shown in Figure <a href="#orgd21a8a8">6</a>.
</p>

<div id="orgd21a8a8" class="figure">
<p><img src="figs/iff_plant_flexible_joint_decentralized.png" alt="iff_plant_flexible_joint_decentralized.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Transfer function from the Actuator force \(F_{i}\) to the force sensor \(F_{m,i}\) (<a href="./figs/iff_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/iff_plant_flexible_joint_decentralized.pdf">pdf</a>)</p>
</div>
</div>
</div>

<div id="outline-container-org40dffdd" class="outline-3">
<h3 id="org40dffdd"><span class="section-number-3">2.3</span> Obtained Damping</h3>
<div class="outline-text-3" id="text-2-3">
<p>
The control is a performed in a decentralized manner.
The \(6 \times 6\) control is a diagonal matrix with pure integration action on the diagonal:
\[ K(s) = g
  \begin{bmatrix}
    \frac{1}{s} & & 0 \\
    & \ddots & \\
    0 & & \frac{1}{s}
  \end{bmatrix} \]
</p>

<p>
The root locus is shown in figure <a href="#org2cdbf69">7</a> and the obtained pole damping function of the control gain is shown in figure <a href="#orge344229">8</a>.
</p>

<div id="org2cdbf69" class="figure">
<p><img src="figs/root_locus_iff_rot_stiffness.png" alt="root_locus_iff_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Root Locus plot with Decentralized Integral Force Feedback when considering the stiffness of flexible joints (<a href="./figs/root_locus_iff_rot_stiffness.png">png</a>, <a href="./figs/root_locus_iff_rot_stiffness.pdf">pdf</a>)</p>
</div>


<div id="orge344229" class="figure">
<p><img src="figs/pole_damping_gain_iff_rot_stiffness.png" alt="pole_damping_gain_iff_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Damping of the poles with respect to the gain of the Decentralized Integral Force Feedback when considering the stiffness of flexible joints (<a href="./figs/pole_damping_gain_iff_rot_stiffness.png">png</a>, <a href="./figs/pole_damping_gain_iff_rot_stiffness.pdf">pdf</a>)</p>
</div>
</div>
</div>

<div id="outline-container-org2ae5aaf" class="outline-3">
<h3 id="org2ae5aaf"><span class="section-number-3">2.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-2-4">
<div class="important">
<p>
The joint stiffness has a huge impact on the attainable active damping performance when using force sensors.
Thus, if Integral Force Feedback is to be used in a Stewart platform with flexible joints, the rotational stiffness of the joints should be minimized.
</p>

</div>
</div>
</div>
</div>

<div id="outline-container-org9425768" class="outline-2">
<h2 id="org9425768"><span class="section-number-2">3</span> Direct Velocity Feedback</h2>
<div class="outline-text-2" id="text-3">
<p>
<a id="org587277a"></a>
</p>
</div>

<div id="outline-container-org61043ac" class="outline-3">
<h3 id="org61043ac"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3>
<div class="outline-text-3" id="text-3-1">
<p>
We first initialize the Stewart platform without joint stiffness.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeFramesPositions(<span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'disable'</span>, <span class="org-constant">true</span>);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
</pre>
</div>

<p>
And we identify the dynamics from force actuators to force sensors.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;

<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_active_damping'</span>;

<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/F'</span>],   1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Dm'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Displacement Outputs [N]</span>

<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, options);
G.InputName  = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
</pre>
</div>

<p>
The transfer function from actuator forces to relative motion sensors is shown in Figure <a href="#orgd8d51db">9</a>.
</p>

<div id="orgd8d51db" class="figure">
<p><img src="figs/dvf_plant_coupling.png" alt="dvf_plant_coupling.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Transfer function from the Actuator force \(F_{i}\) to the Relative Motion Sensor \(D_{m,j}\) with \(i \neq j\) (<a href="./figs/dvf_plant_coupling.png">png</a>, <a href="./figs/dvf_plant_coupling.pdf">pdf</a>)</p>
</div>
</div>
</div>


<div id="outline-container-org8f71141" class="outline-3">
<h3 id="org8f71141"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness on the Dynamics</h3>
<div class="outline-text-3" id="text-3-2">
<p>
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart);
Gf = linearize(mdl, io, options);
Gf.InputName  = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Gf.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
</pre>
</div>

<p>
The new dynamics from force actuator to relative motion sensor is shown in Figure <a href="#orgb18f950">10</a>.
</p>

<div id="orgb18f950" class="figure">
<p><img src="figs/dvf_plant_flexible_joint_decentralized.png" alt="dvf_plant_flexible_joint_decentralized.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Transfer function from the Actuator force \(F_{i}\) to the relative displacement sensor \(D_{m,i}\) (<a href="./figs/dvf_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/dvf_plant_flexible_joint_decentralized.pdf">pdf</a>)</p>
</div>
</div>
</div>

<div id="outline-container-org87c6911" class="outline-3">
<h3 id="org87c6911"><span class="section-number-3">3.3</span> Obtained Damping</h3>
<div class="outline-text-3" id="text-3-3">
<p>
The control is a performed in a decentralized manner.
The \(6 \times 6\) control is a diagonal matrix with pure derivative action on the diagonal:
\[ K(s) = g
  \begin{bmatrix}
    s & & \\
    & \ddots & \\
    & & s
  \end{bmatrix} \]
</p>

<p>
The root locus is shown in figure <a href="#org5cb31c8">11</a> and the obtained pole damping function of the control gain is shown in figure <a href="#org4618492">12</a>.
</p>

<div id="org5cb31c8" class="figure">
<p><img src="figs/root_locus_dvf_rot_stiffness.png" alt="root_locus_dvf_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Root Locus plot with Direct Velocity Feedback when considering the Stiffness of flexible joints (<a href="./figs/root_locus_dvf_rot_stiffness.png">png</a>, <a href="./figs/root_locus_dvf_rot_stiffness.pdf">pdf</a>)</p>
</div>


<div id="org4618492" class="figure">
<p><img src="figs/pole_damping_gain_dvf_rot_stiffness.png" alt="pole_damping_gain_dvf_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Damping of the poles with respect to the gain of the Direct Velocity Feedback when considering the Stiffness of flexible joints (<a href="./figs/pole_damping_gain_dvf_rot_stiffness.png">png</a>, <a href="./figs/pole_damping_gain_dvf_rot_stiffness.pdf">pdf</a>)</p>
</div>
</div>
</div>

<div id="outline-container-org516fed1" class="outline-3">
<h3 id="org516fed1"><span class="section-number-3">3.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-3-4">
<div class="important">
<p>
Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors.
</p>

</div>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-02-06 jeu. 15:39</p>
</div>
</body>
</html>