<?xml version="1.0" encoding="utf-8"?> <?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2020-02-06 jeu. 15:39 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>Stewart Platform - Decentralized Active Damping</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <style type="text/css"> <!--/*--><![CDATA[/*><!--*/ .title { text-align: center; margin-bottom: .2em; } .subtitle { text-align: center; font-size: medium; font-weight: bold; margin-top:0; } .todo { font-family: monospace; color: red; } .done { font-family: monospace; color: green; } .priority { font-family: monospace; color: orange; } .tag { background-color: #eee; font-family: monospace; padding: 2px; font-size: 80%; font-weight: normal; } .timestamp { color: #bebebe; } .timestamp-kwd { color: #5f9ea0; } .org-right { margin-left: auto; margin-right: 0px; text-align: right; } .org-left { margin-left: 0px; margin-right: auto; text-align: left; } .org-center { margin-left: auto; margin-right: auto; text-align: center; } .underline { text-decoration: underline; } #postamble p, #preamble p { font-size: 90%; margin: .2em; } p.verse { margin-left: 3%; } pre { border: 1px solid #ccc; box-shadow: 3px 3px 3px #eee; padding: 8pt; font-family: monospace; overflow: auto; margin: 1.2em; } pre.src { position: relative; overflow: visible; padding-top: 1.2em; } pre.src:before { display: none; position: absolute; background-color: white; top: -10px; right: 10px; padding: 3px; border: 1px solid black; } pre.src:hover:before { display: inline;} /* Languages per Org manual */ pre.src-asymptote:before { content: 'Asymptote'; } pre.src-awk:before { content: 'Awk'; } pre.src-C:before { content: 'C'; } /* pre.src-C++ doesn't work in CSS */ pre.src-clojure:before { content: 'Clojure'; } pre.src-css:before { content: 'CSS'; } pre.src-D:before { content: 'D'; } pre.src-ditaa:before { content: 'ditaa'; } pre.src-dot:before { content: 'Graphviz'; } pre.src-calc:before { content: 'Emacs Calc'; } pre.src-emacs-lisp:before { content: 'Emacs Lisp'; } pre.src-fortran:before { content: 'Fortran'; } pre.src-gnuplot:before { content: 'gnuplot'; } pre.src-haskell:before { content: 'Haskell'; } pre.src-hledger:before { content: 'hledger'; } pre.src-java:before { content: 'Java'; } pre.src-js:before { content: 'Javascript'; } pre.src-latex:before { content: 'LaTeX'; } pre.src-ledger:before { content: 'Ledger'; } pre.src-lisp:before { content: 'Lisp'; } pre.src-lilypond:before { content: 'Lilypond'; } pre.src-lua:before { content: 'Lua'; } pre.src-matlab:before { content: 'MATLAB'; } pre.src-mscgen:before { content: 'Mscgen'; } pre.src-ocaml:before { content: 'Objective Caml'; } pre.src-octave:before { content: 'Octave'; } pre.src-org:before { content: 'Org mode'; } pre.src-oz:before { content: 'OZ'; } pre.src-plantuml:before { content: 'Plantuml'; } pre.src-processing:before { content: 'Processing.js'; } pre.src-python:before { content: 'Python'; } pre.src-R:before { content: 'R'; } pre.src-ruby:before { content: 'Ruby'; } pre.src-sass:before { content: 'Sass'; } pre.src-scheme:before { content: 'Scheme'; } pre.src-screen:before { content: 'Gnu Screen'; } pre.src-sed:before { content: 'Sed'; } pre.src-sh:before { content: 'shell'; } pre.src-sql:before { content: 'SQL'; } pre.src-sqlite:before { content: 'SQLite'; } /* additional languages in org.el's org-babel-load-languages alist */ pre.src-forth:before { content: 'Forth'; } pre.src-io:before { content: 'IO'; } pre.src-J:before { content: 'J'; } pre.src-makefile:before { content: 'Makefile'; } pre.src-maxima:before { content: 'Maxima'; } pre.src-perl:before { content: 'Perl'; } pre.src-picolisp:before { content: 'Pico Lisp'; } pre.src-scala:before { content: 'Scala'; } pre.src-shell:before { content: 'Shell Script'; } pre.src-ebnf2ps:before { content: 'ebfn2ps'; } /* additional language identifiers per "defun org-babel-execute" in ob-*.el */ pre.src-cpp:before { content: 'C++'; } pre.src-abc:before { content: 'ABC'; } pre.src-coq:before { content: 'Coq'; } pre.src-groovy:before { content: 'Groovy'; } /* additional language identifiers from org-babel-shell-names in ob-shell.el: ob-shell is the only babel language using a lambda to put the execution function name together. */ pre.src-bash:before { content: 'bash'; } pre.src-csh:before { content: 'csh'; } pre.src-ash:before { content: 'ash'; } pre.src-dash:before { content: 'dash'; } pre.src-ksh:before { content: 'ksh'; } pre.src-mksh:before { content: 'mksh'; } pre.src-posh:before { content: 'posh'; } /* Additional Emacs modes also supported by the LaTeX listings package */ pre.src-ada:before { content: 'Ada'; } pre.src-asm:before { content: 'Assembler'; } pre.src-caml:before { content: 'Caml'; } pre.src-delphi:before { content: 'Delphi'; } pre.src-html:before { content: 'HTML'; } pre.src-idl:before { content: 'IDL'; } pre.src-mercury:before { content: 'Mercury'; } pre.src-metapost:before { content: 'MetaPost'; } pre.src-modula-2:before { content: 'Modula-2'; } pre.src-pascal:before { content: 'Pascal'; } pre.src-ps:before { content: 'PostScript'; } pre.src-prolog:before { content: 'Prolog'; } pre.src-simula:before { content: 'Simula'; } pre.src-tcl:before { content: 'tcl'; } pre.src-tex:before { content: 'TeX'; } pre.src-plain-tex:before { content: 'Plain TeX'; } pre.src-verilog:before { content: 'Verilog'; } pre.src-vhdl:before { content: 'VHDL'; } pre.src-xml:before { content: 'XML'; } pre.src-nxml:before { content: 'XML'; } /* add a generic configuration mode; LaTeX export needs an additional (add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */ pre.src-conf:before { content: 'Configuration File'; } table { border-collapse:collapse; } caption.t-above { caption-side: top; } caption.t-bottom { caption-side: bottom; } td, th { vertical-align:top; } th.org-right { text-align: center; } th.org-left { text-align: center; } th.org-center { text-align: center; } td.org-right { text-align: right; } td.org-left { text-align: left; } td.org-center { text-align: center; } dt { font-weight: bold; } .footpara { display: inline; } .footdef { margin-bottom: 1em; } .figure { padding: 1em; } .figure p { text-align: center; } .equation-container { display: table; text-align: center; width: 100%; } .equation { vertical-align: middle; } .equation-label { display: table-cell; text-align: right; vertical-align: middle; } .inlinetask { padding: 10px; border: 2px solid gray; margin: 10px; background: #ffffcc; } #org-div-home-and-up { text-align: right; font-size: 70%; white-space: nowrap; } textarea { overflow-x: auto; } .linenr { font-size: smaller } .code-highlighted { background-color: #ffff00; } .org-info-js_info-navigation { border-style: none; } #org-info-js_console-label { font-size: 10px; font-weight: bold; white-space: nowrap; } .org-info-js_search-highlight { background-color: #ffff00; color: #000000; font-weight: bold; } .org-svg { width: 90%; } /*]]>*/--> </style> <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/> <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/> <script src="./js/jquery.min.js"></script> <script src="./js/bootstrap.min.js"></script> <script src="./js/jquery.stickytableheaders.min.js"></script> <script src="./js/readtheorg.js"></script> <script type="text/javascript"> /* @licstart The following is the entire license notice for the JavaScript code in this tag. Copyright (C) 2012-2020 Free Software Foundation, Inc. The JavaScript code in this tag is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License (GNU GPL) as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The code is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU GPL for more details. As additional permission under GNU GPL version 3 section 7, you may distribute non-source (e.g., minimized or compacted) forms of that code without the copy of the GNU GPL normally required by section 4, provided you include this license notice and a URL through which recipients can access the Corresponding Source. @licend The above is the entire license notice for the JavaScript code in this tag. */ <!--/*--><![CDATA[/*><!--*/ function CodeHighlightOn(elem, id) { var target = document.getElementById(id); if(null != target) { elem.cacheClassElem = elem.className; elem.cacheClassTarget = target.className; target.className = "code-highlighted"; elem.className = "code-highlighted"; } } function CodeHighlightOff(elem, id) { var target = document.getElementById(id); if(elem.cacheClassElem) elem.className = elem.cacheClassElem; if(elem.cacheClassTarget) target.className = elem.cacheClassTarget; } /*]]>*///--> </script> <script> MathJax = { tex: { macros: { bm: ["\\boldsymbol{#1}",1], } } }; </script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="./index.html"> UP </a> | <a accesskey="H" href="./index.html"> HOME </a> </div><div id="content"> <h1 class="title">Stewart Platform - Decentralized Active Damping</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#orgfba33d4">1. Inertial Control</a> <ul> <li><a href="#org0ea4bd4">1.1. Identification of the Dynamics</a></li> <li><a href="#org5a29480">1.2. Effect of the Flexible Joint stiffness on the Dynamics</a></li> <li><a href="#orga92be75">1.3. Obtained Damping</a></li> <li><a href="#orgb29f377">1.4. Conclusion</a></li> </ul> </li> <li><a href="#org5fde56d">2. Integral Force Feedback</a> <ul> <li><a href="#org8823e64">2.1. Identification of the Dynamics with perfect Joints</a></li> <li><a href="#org2aff899">2.2. Effect of the Flexible Joint stiffness on the Dynamics</a></li> <li><a href="#org40dffdd">2.3. Obtained Damping</a></li> <li><a href="#org2ae5aaf">2.4. Conclusion</a></li> </ul> </li> <li><a href="#org9425768">3. Direct Velocity Feedback</a> <ul> <li><a href="#org61043ac">3.1. Identification of the Dynamics with perfect Joints</a></li> <li><a href="#org8f71141">3.2. Effect of the Flexible Joint stiffness on the Dynamics</a></li> <li><a href="#org87c6911">3.3. Obtained Damping</a></li> <li><a href="#org516fed1">3.4. Conclusion</a></li> </ul> </li> </ul> </div> </div> <p> The following decentralized active damping techniques are briefly studied: </p> <ul class="org-ul"> <li>Inertial Control (proportional feedback of the absolute velocity): Section <a href="#org3c68d9e">1</a></li> <li>Integral Force Feedback: Section <a href="#org62cd19c">2</a></li> <li>Direct feedback of the relative velocity of each strut: Section <a href="#org587277a">3</a></li> </ul> <div id="outline-container-orgfba33d4" class="outline-2"> <h2 id="orgfba33d4"><span class="section-number-2">1</span> Inertial Control</h2> <div class="outline-text-2" id="text-1"> <p> <a id="org3c68d9e"></a> </p> </div> <div id="outline-container-org0ea4bd4" class="outline-3"> <h3 id="org0ea4bd4"><span class="section-number-3">1.1</span> Identification of the Dynamics</h3> <div class="outline-text-3" id="text-1-1"> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeFramesPositions(<span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, <span class="org-string">'disable'</span>, <span class="org-constant">true</span>); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_active_damping'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/F'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span> io(io_i) = linio([mdl, <span class="org-string">'/Vm'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute velocity of each leg [m/s]</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io, options); G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; G.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>}; </pre> </div> <p> The transfer function from actuator forces to force sensors is shown in Figure <a href="#orgfc5367b">1</a>. </p> <div id="orgfc5367b" class="figure"> <p><img src="figs/inertial_plant_coupling.png" alt="inertial_plant_coupling.png" /> </p> <p><span class="figure-number">Figure 1: </span>Transfer function from the Actuator force \(F_{i}\) to the absolute velocity of the same leg \(v_{m,i}\) and to the absolute velocity of the other legs \(v_{m,j}\) with \(i \neq j\) in grey (<a href="./figs/inertial_plant_coupling.png">png</a>, <a href="./figs/inertial_plant_coupling.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org5a29480" class="outline-3"> <h3 id="org5a29480"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness on the Dynamics</h3> <div class="outline-text-3" id="text-1-2"> <p> We add some stiffness and damping in the flexible joints and we re-identify the dynamics. </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeJointDynamics(stewart); Gf = linearize(mdl, io, options); Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; Gf.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>}; </pre> </div> <p> The new dynamics from force actuator to force sensor is shown in Figure <a href="#org2ee5d65">2</a>. </p> <div id="org2ee5d65" class="figure"> <p><img src="figs/inertial_plant_flexible_joint_decentralized.png" alt="inertial_plant_flexible_joint_decentralized.png" /> </p> <p><span class="figure-number">Figure 2: </span>Transfer function from the Actuator force \(F_{i}\) to the absolute velocity sensor \(v_{m,i}\) (<a href="./figs/inertial_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/inertial_plant_flexible_joint_decentralized.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-orga92be75" class="outline-3"> <h3 id="orga92be75"><span class="section-number-3">1.3</span> Obtained Damping</h3> <div class="outline-text-3" id="text-1-3"> <p> The control is a performed in a decentralized manner. The \(6 \times 6\) control is a diagonal matrix with pure proportional action on the diagonal: \[ K(s) = g \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{bmatrix} \] </p> <p> The root locus is shown in figure <a href="#org78a599c">3</a> and the obtained pole damping function of the control gain is shown in figure <a href="#org0b6bb28">4</a>. </p> <div id="org78a599c" class="figure"> <p><img src="figs/root_locus_inertial_rot_stiffness.png" alt="root_locus_inertial_rot_stiffness.png" /> </p> <p><span class="figure-number">Figure 3: </span>Root Locus plot with Decentralized Inertial Control when considering the stiffness of flexible joints (<a href="./figs/root_locus_inertial_rot_stiffness.png">png</a>, <a href="./figs/root_locus_inertial_rot_stiffness.pdf">pdf</a>)</p> </div> <div id="org0b6bb28" class="figure"> <p><img src="figs/pole_damping_gain_inertial_rot_stiffness.png" alt="pole_damping_gain_inertial_rot_stiffness.png" /> </p> <p><span class="figure-number">Figure 4: </span>Damping of the poles with respect to the gain of the Decentralized Inertial Control when considering the stiffness of flexible joints (<a href="./figs/pole_damping_gain_inertial_rot_stiffness.png">png</a>, <a href="./figs/pole_damping_gain_inertial_rot_stiffness.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-orgb29f377" class="outline-3"> <h3 id="orgb29f377"><span class="section-number-3">1.4</span> Conclusion</h3> <div class="outline-text-3" id="text-1-4"> <div class="important"> <p> Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors. </p> </div> </div> </div> </div> <div id="outline-container-org5fde56d" class="outline-2"> <h2 id="org5fde56d"><span class="section-number-2">2</span> Integral Force Feedback</h2> <div class="outline-text-2" id="text-2"> <p> <a id="org62cd19c"></a> </p> </div> <div id="outline-container-org8823e64" class="outline-3"> <h3 id="org8823e64"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3> <div class="outline-text-3" id="text-2-1"> <p> We first initialize the Stewart platform without joint stiffness. </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeFramesPositions(<span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, <span class="org-string">'disable'</span>, <span class="org-constant">true</span>); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); </pre> </div> <p> And we identify the dynamics from force actuators to force sensors. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_active_damping'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/F'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span> io(io_i) = linio([mdl, <span class="org-string">'/Fm'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Force Sensor Outputs [N]</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io, options); G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; G.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>}; </pre> </div> <p> The transfer function from actuator forces to force sensors is shown in Figure <a href="#orgae4e327">5</a>. </p> <div id="orgae4e327" class="figure"> <p><img src="figs/iff_plant_coupling.png" alt="iff_plant_coupling.png" /> </p> <p><span class="figure-number">Figure 5: </span>Transfer function from the Actuator force \(F_{i}\) to the Force sensor of the same leg \(F_{m,i}\) and to the force sensor of the other legs \(F_{m,j}\) with \(i \neq j\) in grey (<a href="./figs/iff_plant_coupling.png">png</a>, <a href="./figs/iff_plant_coupling.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org2aff899" class="outline-3"> <h3 id="org2aff899"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness on the Dynamics</h3> <div class="outline-text-3" id="text-2-2"> <p> We add some stiffness and damping in the flexible joints and we re-identify the dynamics. </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeJointDynamics(stewart); Gf = linearize(mdl, io, options); Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; Gf.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>}; </pre> </div> <p> The new dynamics from force actuator to force sensor is shown in Figure <a href="#orgd21a8a8">6</a>. </p> <div id="orgd21a8a8" class="figure"> <p><img src="figs/iff_plant_flexible_joint_decentralized.png" alt="iff_plant_flexible_joint_decentralized.png" /> </p> <p><span class="figure-number">Figure 6: </span>Transfer function from the Actuator force \(F_{i}\) to the force sensor \(F_{m,i}\) (<a href="./figs/iff_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/iff_plant_flexible_joint_decentralized.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org40dffdd" class="outline-3"> <h3 id="org40dffdd"><span class="section-number-3">2.3</span> Obtained Damping</h3> <div class="outline-text-3" id="text-2-3"> <p> The control is a performed in a decentralized manner. The \(6 \times 6\) control is a diagonal matrix with pure integration action on the diagonal: \[ K(s) = g \begin{bmatrix} \frac{1}{s} & & 0 \\ & \ddots & \\ 0 & & \frac{1}{s} \end{bmatrix} \] </p> <p> The root locus is shown in figure <a href="#org2cdbf69">7</a> and the obtained pole damping function of the control gain is shown in figure <a href="#orge344229">8</a>. </p> <div id="org2cdbf69" class="figure"> <p><img src="figs/root_locus_iff_rot_stiffness.png" alt="root_locus_iff_rot_stiffness.png" /> </p> <p><span class="figure-number">Figure 7: </span>Root Locus plot with Decentralized Integral Force Feedback when considering the stiffness of flexible joints (<a href="./figs/root_locus_iff_rot_stiffness.png">png</a>, <a href="./figs/root_locus_iff_rot_stiffness.pdf">pdf</a>)</p> </div> <div id="orge344229" class="figure"> <p><img src="figs/pole_damping_gain_iff_rot_stiffness.png" alt="pole_damping_gain_iff_rot_stiffness.png" /> </p> <p><span class="figure-number">Figure 8: </span>Damping of the poles with respect to the gain of the Decentralized Integral Force Feedback when considering the stiffness of flexible joints (<a href="./figs/pole_damping_gain_iff_rot_stiffness.png">png</a>, <a href="./figs/pole_damping_gain_iff_rot_stiffness.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org2ae5aaf" class="outline-3"> <h3 id="org2ae5aaf"><span class="section-number-3">2.4</span> Conclusion</h3> <div class="outline-text-3" id="text-2-4"> <div class="important"> <p> The joint stiffness has a huge impact on the attainable active damping performance when using force sensors. Thus, if Integral Force Feedback is to be used in a Stewart platform with flexible joints, the rotational stiffness of the joints should be minimized. </p> </div> </div> </div> </div> <div id="outline-container-org9425768" class="outline-2"> <h2 id="org9425768"><span class="section-number-2">3</span> Direct Velocity Feedback</h2> <div class="outline-text-2" id="text-3"> <p> <a id="org587277a"></a> </p> </div> <div id="outline-container-org61043ac" class="outline-3"> <h3 id="org61043ac"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3> <div class="outline-text-3" id="text-3-1"> <p> We first initialize the Stewart platform without joint stiffness. </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeFramesPositions(<span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, <span class="org-string">'disable'</span>, <span class="org-constant">true</span>); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); </pre> </div> <p> And we identify the dynamics from force actuators to force sensors. </p> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_active_damping'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/F'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span> io(io_i) = linio([mdl, <span class="org-string">'/Dm'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Displacement Outputs [N]</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io, options); G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; G.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>}; </pre> </div> <p> The transfer function from actuator forces to relative motion sensors is shown in Figure <a href="#orgd8d51db">9</a>. </p> <div id="orgd8d51db" class="figure"> <p><img src="figs/dvf_plant_coupling.png" alt="dvf_plant_coupling.png" /> </p> <p><span class="figure-number">Figure 9: </span>Transfer function from the Actuator force \(F_{i}\) to the Relative Motion Sensor \(D_{m,j}\) with \(i \neq j\) (<a href="./figs/dvf_plant_coupling.png">png</a>, <a href="./figs/dvf_plant_coupling.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org8f71141" class="outline-3"> <h3 id="org8f71141"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness on the Dynamics</h3> <div class="outline-text-3" id="text-3-2"> <p> We add some stiffness and damping in the flexible joints and we re-identify the dynamics. </p> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeJointDynamics(stewart); Gf = linearize(mdl, io, options); Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; Gf.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>}; </pre> </div> <p> The new dynamics from force actuator to relative motion sensor is shown in Figure <a href="#orgb18f950">10</a>. </p> <div id="orgb18f950" class="figure"> <p><img src="figs/dvf_plant_flexible_joint_decentralized.png" alt="dvf_plant_flexible_joint_decentralized.png" /> </p> <p><span class="figure-number">Figure 10: </span>Transfer function from the Actuator force \(F_{i}\) to the relative displacement sensor \(D_{m,i}\) (<a href="./figs/dvf_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/dvf_plant_flexible_joint_decentralized.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org87c6911" class="outline-3"> <h3 id="org87c6911"><span class="section-number-3">3.3</span> Obtained Damping</h3> <div class="outline-text-3" id="text-3-3"> <p> The control is a performed in a decentralized manner. The \(6 \times 6\) control is a diagonal matrix with pure derivative action on the diagonal: \[ K(s) = g \begin{bmatrix} s & & \\ & \ddots & \\ & & s \end{bmatrix} \] </p> <p> The root locus is shown in figure <a href="#org5cb31c8">11</a> and the obtained pole damping function of the control gain is shown in figure <a href="#org4618492">12</a>. </p> <div id="org5cb31c8" class="figure"> <p><img src="figs/root_locus_dvf_rot_stiffness.png" alt="root_locus_dvf_rot_stiffness.png" /> </p> <p><span class="figure-number">Figure 11: </span>Root Locus plot with Direct Velocity Feedback when considering the Stiffness of flexible joints (<a href="./figs/root_locus_dvf_rot_stiffness.png">png</a>, <a href="./figs/root_locus_dvf_rot_stiffness.pdf">pdf</a>)</p> </div> <div id="org4618492" class="figure"> <p><img src="figs/pole_damping_gain_dvf_rot_stiffness.png" alt="pole_damping_gain_dvf_rot_stiffness.png" /> </p> <p><span class="figure-number">Figure 12: </span>Damping of the poles with respect to the gain of the Direct Velocity Feedback when considering the Stiffness of flexible joints (<a href="./figs/pole_damping_gain_dvf_rot_stiffness.png">png</a>, <a href="./figs/pole_damping_gain_dvf_rot_stiffness.pdf">pdf</a>)</p> </div> </div> </div> <div id="outline-container-org516fed1" class="outline-3"> <h3 id="org516fed1"><span class="section-number-3">3.4</span> Conclusion</h3> <div class="outline-text-3" id="text-3-4"> <div class="important"> <p> Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors. </p> </div> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2020-02-06 jeu. 15:39</p> </div> </body> </html>