UP | HOME

Kinematic Study of the Stewart Platform

Table of Contents

1 Needed Actuator Stroke

The goal is to determine the needed stroke of the actuators to obtain wanted translations and rotations.

1.1 Stewart architecture definition

We use a cubic architecture.

opts = struct(...
    'H_tot', 90, ... % Total height of the Hexapod [mm]
    'L',     200/sqrt(3), ... % Size of the Cube [mm]
    'H',     60, ... % Height between base joints and platform joints [mm]
    'H0',    200/2-60/2 ... % Height between the corner of the cube and the plane containing the base joints [mm]
    );
stewart = initializeCubicConfiguration(opts);
opts = struct(...
    'Jd_pos', [0, 0, 100], ... % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]
    'Jf_pos', [0, 0, -50]  ... % Position of the Jacobian for force location from the top of the mobile platform [mm]
    );
stewart = computeGeometricalProperties(stewart, opts);
opts = struct(...
    'stroke', 50e-6 ... % Maximum stroke of each actuator [m]
    );
stewart = initializeMechanicalElements(stewart, opts);

save('./mat/stewart.mat', 'stewart');

1.2 Wanted translations and rotations

We define wanted translations and rotations

Tx_max = 15e-6; % Translation [m]
Ty_max = 15e-6; % Translation [m]
Tz_max = 15e-6; % Translation [m]
Rx_max = 30e-6; % Rotation [rad]
Ry_max = 30e-6; % Rotation [rad]

1.3 Needed stroke for "pure" rotations or translations

First, we estimate the needed actuator stroke for "pure" rotations and translation.

LTx = stewart.Jd*[Tx_max 0 0 0 0 0]';
LTy = stewart.Jd*[0 Ty_max 0 0 0 0]';
LTz = stewart.Jd*[0 0 Tz_max 0 0 0]';
LRx = stewart.Jd*[0 0 0 Rx_max 0 0]';
LRy = stewart.Jd*[0 0 0 0 Ry_max 0]';
From -1.2e-05[m] to 1.1e-05[m]: Total stroke = 22.9[um]

1.4 Needed stroke for combined translations and rotations

Now, we combine translations and rotations, and we try to find the worst case (that we suppose to happen at the border).

Lmax = 0;
Lmin = 0;
pos = [0, 0, 0, 0, 0];
for Tx = [-Tx_max,Tx_max]
for Ty = [-Ty_max,Ty_max]
for Tz = [-Tz_max,Tz_max]
for Rx = [-Rx_max,Rx_max]
for Ry = [-Ry_max,Ry_max]
    lmax = max(stewart.Jd*[Tx Ty Tz Rx Ry 0]');
    lmin = min(stewart.Jd*[Tx Ty Tz Rx Ry 0]');
    if lmax > Lmax
        Lmax = lmax;
        pos = [Tx Ty Tz Rx Ry];
    end
    if lmin < Lmin
        Lmin = lmin;
    end
end
end
end
end
end

We obtain a needed stroke shown below (almost two times the needed stroke for "pure" rotations and translations).

From -3.1e-05[m] to 3.1e-05[m]: Total stroke = 61.5[um]

2 Maximum Stroke

From a specified actuator stroke, we try to estimate the available maneuverability of the Stewart platform.

[X, Y, Z] = getMaxPositions(stewart);
figure;
plot3(X, Y, Z, 'k-')

3 Functions

3.1 getMaxPositions

function [X, Y, Z] = getMaxPositions(stewart)
    Leg = stewart.Leg;
    J = stewart.Jd;
    theta = linspace(0, 2*pi, 100);
    phi = linspace(-pi/2 , pi/2, 100);
    dmax = zeros(length(theta), length(phi));

    for i = 1:length(theta)
        for j = 1:length(phi)
            L = J*[cos(phi(j))*cos(theta(i)) cos(phi(j))*sin(theta(i)) sin(phi(j)) 0 0 0]';
            dmax(i, j) = Leg.stroke/max(abs(L));
        end
    end

    X = dmax.*cos(repmat(phi,length(theta),1)).*cos(repmat(theta,length(phi),1))';
    Y = dmax.*cos(repmat(phi,length(theta),1)).*sin(repmat(theta,length(phi),1))';
    Z = dmax.*sin(repmat(phi,length(theta),1));
end

3.2 getMaxPureDisplacement

function [max_disp] = getMaxPureDisplacement(Leg, J)
    max_disp = zeros(6, 1);
    max_disp(1) = Leg.stroke/max(abs(J*[1 0 0 0 0 0]'));
    max_disp(2) = Leg.stroke/max(abs(J*[0 1 0 0 0 0]'));
    max_disp(3) = Leg.stroke/max(abs(J*[0 0 1 0 0 0]'));
    max_disp(4) = Leg.stroke/max(abs(J*[0 0 0 1 0 0]'));
    max_disp(5) = Leg.stroke/max(abs(J*[0 0 0 0 1 0]'));
    max_disp(6) = Leg.stroke/max(abs(J*[0 0 0 0 0 1]'));
end

Author: Thomas Dehaeze

Created: 2019-08-26 lun. 11:55

Validate