#+TITLE: Identification of the Stewart Platform using Simscape :DRAWER: #+STARTUP: overview #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ./index.html #+HTML_LINK_UP: ./index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results file raw replace #+PROPERTY: header-args:latex+ :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports results #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") :END: * Introduction :ignore: In this document, we discuss the various methods to identify the behavior of the Stewart platform. - [[sec:modal_analysis]] - [[sec:transmissibility]] - [[sec:compliance]] * Modal Analysis of the Stewart Platform <> ** Introduction :ignore: ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :results none :exports none simulinkproject('../'); #+end_src #+begin_src matlab open('stewart_platform_model.slx') #+end_src ** Initialize the Stewart Platform #+begin_src matlab stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart); #+end_src #+begin_src matlab ground = initializeGround('type', 'none'); payload = initializePayload('type', 'none'); controller = initializeController('type', 'open-loop'); #+end_src ** Identification #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A} io(io_i) = linio([mdl, '/Relative Motion Sensor'], 2, 'openoutput'); io_i = io_i + 1; % Velocity of {B} w.r.t. {A} %% Run the linearization G = linearize(mdl, io); % G.InputName = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'}; % G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'}; #+end_src Let's check the size of =G=: #+begin_src matlab :results replace output size(G) #+end_src #+RESULTS: : size(G) : State-space model with 12 outputs, 6 inputs, and 18 states. : 'org_babel_eoe' : ans = : 'org_babel_eoe' We expect to have only 12 states (corresponding to the 6dof of the mobile platform). #+begin_src matlab :results replace output Gm = minreal(G); #+end_src #+RESULTS: : Gm = minreal(G); : 6 states removed. And indeed, we obtain 12 states. ** Coordinate transformation We can perform the following transformation using the =ss2ss= command. #+begin_src matlab Gt = ss2ss(Gm, Gm.C); #+end_src Then, the =C= matrix of =Gt= is the unity matrix which means that the states of the state space model are equal to the measurements $\bm{Y}$. The measurements are the 6 displacement and 6 velocities of mobile platform with respect to $\{B\}$. We could perform the transformation by hand: #+begin_src matlab At = Gm.C*Gm.A*pinv(Gm.C); Bt = Gm.C*Gm.B; Ct = eye(12); Dt = zeros(12, 6); Gt = ss(At, Bt, Ct, Dt); #+end_src ** Analysis #+begin_src matlab [V,D] = eig(Gt.A); #+end_src #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) ws = imag(diag(D))/2/pi; [ws,I] = sort(ws) xi = 100*real(diag(D))./imag(diag(D)); xi = xi(I); data2orgtable([[1:length(ws(ws>0))]', ws(ws>0), xi(xi>0)], {}, {'Mode Number', 'Resonance Frequency [Hz]', 'Damping Ratio [%]'}, ' %.1f '); #+end_src #+RESULTS: | Mode Number | Resonance Frequency [Hz] | Damping Ratio [%] | |-------------+--------------------------+-------------------| | 1.0 | 780.6 | 0.4 | | 2.0 | 780.6 | 0.3 | | 3.0 | 903.9 | 0.3 | | 4.0 | 1061.4 | 0.3 | | 5.0 | 1061.4 | 0.2 | | 6.0 | 1269.6 | 0.2 | ** Visualizing the modes To visualize the i'th mode, we may excite the system using the inputs $U_i$ such that $B U_i$ is co-linear to $\xi_i$ (the mode we want to excite). \[ U(t) = e^{\alpha t} ( ) \] Let's first sort the modes and just take the modes corresponding to a eigenvalue with a positive imaginary part. #+begin_src matlab ws = imag(diag(D)); [ws,I] = sort(ws) ws = ws(7:end); I = I(7:end); #+end_src #+begin_src matlab for i = 1:length(ws) #+end_src #+begin_src matlab i_mode = I(i); % the argument is the i'th mode #+end_src #+begin_src matlab lambda_i = D(i_mode, i_mode); xi_i = V(:,i_mode); a_i = real(lambda_i); b_i = imag(lambda_i); #+end_src Let do 10 periods of the mode. #+begin_src matlab t = linspace(0, 10/(imag(lambda_i)/2/pi), 1000); U_i = pinv(Gt.B) * real(xi_i * lambda_i * (cos(b_i * t) + 1i*sin(b_i * t))); #+end_src #+begin_src matlab U = timeseries(U_i, t); #+end_src Simulation: #+begin_src matlab load('mat/conf_simscape.mat'); set_param(conf_simscape, 'StopTime', num2str(t(end))); sim(mdl); #+end_src Save the movie of the mode shape. #+begin_src matlab smwritevideo(mdl, sprintf('figs/mode%i', i), ... 'PlaybackSpeedRatio', 1/(b_i/2/pi), ... 'FrameRate', 30, ... 'FrameSize', [800, 400]); #+end_src #+begin_src matlab end #+end_src #+name: fig:mode1 #+caption: Identified mode - 1 [[file:figs/mode1.gif]] #+name: fig:mode3 #+caption: Identified mode - 3 [[file:figs/mode3.gif]] #+name: fig:mode5 #+caption: Identified mode - 5 [[file:figs/mode5.gif]] * Transmissibility Analysis <> ** Introduction :ignore: ** Matlab Init :noexport: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab simulinkproject('../'); #+end_src #+begin_src matlab open('stewart_platform_model.slx') #+end_src ** Initialize the Stewart platform #+begin_src matlab stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, 'type', 'accelerometer', 'freq', 5e3); #+end_src We set the rotation point of the ground to be at the same point at frames $\{A\}$ and $\{B\}$. #+begin_src matlab ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); payload = initializePayload('type', 'rigid'); controller = initializeController('type', 'open-loop'); #+end_src ** Transmissibility #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Disturbances/D_w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m, rad] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad] %% Run the linearization T = linearize(mdl, io, options); T.InputName = {'Wdx', 'Wdy', 'Wdz', 'Wrx', 'Wry', 'Wrz'}; T.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'}; #+end_src #+begin_src matlab freqs = logspace(1, 4, 1000); figure; for ix = 1:6 for iy = 1:6 subplot(6, 6, (ix-1)*6 + iy); hold on; plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, 'Hz'))), 'k-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylim([1e-5, 10]); xlim([freqs(1), freqs(end)]); if ix < 6 xticklabels({}); end if iy > 1 yticklabels({}); end end end #+end_src From cite:preumont07_six_axis_singl_stage_activ, one can use the Frobenius norm of the transmissibility matrix to obtain a scalar indicator of the transmissibility performance of the system: \begin{align*} \| \bm{T}(\omega) \| &= \sqrt{\text{Trace}[\bm{T}(\omega) \bm{T}(\omega)^H]}\\ &= \sqrt{\Sigma_{i=1}^6 \Sigma_{j=1}^6 |T_{ij}|^2} \end{align*} #+begin_src matlab freqs = logspace(1, 4, 1000); T_norm = zeros(length(freqs), 1); for i = 1:length(freqs) T_norm(i) = sqrt(trace(freqresp(T, freqs(i), 'Hz')*freqresp(T, freqs(i), 'Hz')')); end #+end_src And we normalize by a factor $\sqrt{6}$ to obtain a performance metric comparable to the transmissibility of a one-axis isolator: \[ \Gamma(\omega) = \|\bm{T}(\omega)\| / \sqrt{6} \] #+begin_src matlab Gamma = T_norm/sqrt(6); #+end_src #+begin_src matlab figure; plot(freqs, Gamma) set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); #+end_src * Compliance Analysis <> ** Introduction :ignore: ** Matlab Init :noexport: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab simulinkproject('../'); #+end_src #+begin_src matlab open('stewart_platform_model.slx') #+end_src ** Initialize the Stewart platform #+begin_src matlab stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, 'type', 'accelerometer', 'freq', 5e3); #+end_src We set the rotation point of the ground to be at the same point at frames $\{A\}$ and $\{B\}$. #+begin_src matlab ground = initializeGround('type', 'none'); payload = initializePayload('type', 'rigid'); controller = initializeController('type', 'open-loop'); #+end_src ** Compliance #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Disturbances/F_ext'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m, rad] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad] %% Run the linearization C = linearize(mdl, io, options); C.InputName = {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'}; C.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'}; #+end_src #+begin_src matlab freqs = logspace(1, 4, 1000); figure; for ix = 1:6 for iy = 1:6 subplot(6, 6, (ix-1)*6 + iy); hold on; plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, 'Hz'))), 'k-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylim([1e-10, 1e-3]); xlim([freqs(1), freqs(end)]); if ix < 6 xticklabels({}); end if iy > 1 yticklabels({}); end end end #+end_src We can try to use the Frobenius norm to obtain a scalar value representing the 6-dof compliance of the Stewart platform. #+begin_src matlab freqs = logspace(1, 4, 1000); C_norm = zeros(length(freqs), 1); for i = 1:length(freqs) C_norm(i) = sqrt(trace(freqresp(C, freqs(i), 'Hz')*freqresp(C, freqs(i), 'Hz')')); end #+end_src #+begin_src matlab figure; plot(freqs, C_norm) set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); #+end_src * Functions ** Compute the Transmissibility :PROPERTIES: :header-args:matlab+: :tangle ../src/computeTransmissibility.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: <> *** Function description :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [T, T_norm, freqs] = computeTransmissibility(args) % computeTransmissibility - % % Syntax: [T, T_norm, freqs] = computeTransmissibility(args) % % Inputs: % - args - Structure with the following fields: % - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm % - freqs [] - Frequency vector to estimate the Frobenius norm % % Outputs: % - T [6x6 ss] - Transmissibility matrix % - T_norm [length(freqs)x1] - Frobenius norm of the Transmissibility matrix % - freqs [length(freqs)x1] - Frequency vector in [Hz] #+end_src *** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments args.plots logical {mustBeNumericOrLogical} = false args.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000) end #+end_src #+begin_src matlab freqs = args.freqs; #+end_src *** Identification of the Transmissibility Matrix :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Disturbances/D_w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m, rad] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad] %% Run the linearization T = linearize(mdl, io, options); T.InputName = {'Wdx', 'Wdy', 'Wdz', 'Wrx', 'Wry', 'Wrz'}; T.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'}; #+end_src If wanted, the 6x6 transmissibility matrix is plotted. #+begin_src matlab p_handle = zeros(6*6,1); if args.plots fig = figure; for ix = 1:6 for iy = 1:6 p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy); hold on; plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, 'Hz'))), 'k-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); if ix < 6 xticklabels({}); end if iy > 1 yticklabels({}); end end end linkaxes(p_handle, 'xy') xlim([freqs(1), freqs(end)]); ylim([1e-5, 1e2]); han = axes(fig, 'visible', 'off'); han.XLabel.Visible = 'on'; han.YLabel.Visible = 'on'; xlabel(han, 'Frequency [Hz]'); ylabel(han, 'Transmissibility [m/m]'); end #+end_src *** Computation of the Frobenius norm :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab T_norm = zeros(length(freqs), 1); for i = 1:length(freqs) T_norm(i) = sqrt(trace(freqresp(T, freqs(i), 'Hz')*freqresp(T, freqs(i), 'Hz')')); end #+end_src #+begin_src matlab T_norm = T_norm/sqrt(6); #+end_src #+begin_src matlab if args.plots figure; plot(freqs, T_norm) set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Transmissibility - Frobenius Norm'); end #+end_src ** Compute the Compliance :PROPERTIES: :header-args:matlab+: :tangle ../src/computeCompliance.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: <> *** Function description :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [C, C_norm, freqs] = computeCompliance(args) % computeCompliance - % % Syntax: [C, C_norm, freqs] = computeCompliance(args) % % Inputs: % - args - Structure with the following fields: % - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm % - freqs [] - Frequency vector to estimate the Frobenius norm % % Outputs: % - C [6x6 ss] - Compliance matrix % - C_norm [length(freqs)x1] - Frobenius norm of the Compliance matrix % - freqs [length(freqs)x1] - Frequency vector in [Hz] #+end_src *** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments args.plots logical {mustBeNumericOrLogical} = false args.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000) end #+end_src #+begin_src matlab freqs = args.freqs; #+end_src *** Identification of the Compliance Matrix :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Disturbances/F_ext'], 1, 'openinput'); io_i = io_i + 1; % External forces [N, N*m] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad] %% Run the linearization C = linearize(mdl, io, options); C.InputName = {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'}; C.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'}; #+end_src If wanted, the 6x6 transmissibility matrix is plotted. #+begin_src matlab p_handle = zeros(6*6,1); if args.plots fig = figure; for ix = 1:6 for iy = 1:6 p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy); hold on; plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, 'Hz'))), 'k-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); if ix < 6 xticklabels({}); end if iy > 1 yticklabels({}); end end end linkaxes(p_handle, 'xy') xlim([freqs(1), freqs(end)]); han = axes(fig, 'visible', 'off'); han.XLabel.Visible = 'on'; han.YLabel.Visible = 'on'; xlabel(han, 'Frequency [Hz]'); ylabel(han, 'Compliance [m/N, rad/(N*m)]'); end #+end_src *** Computation of the Frobenius norm :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab freqs = args.freqs; C_norm = zeros(length(freqs), 1); for i = 1:length(freqs) C_norm(i) = sqrt(trace(freqresp(C, freqs(i), 'Hz')*freqresp(C, freqs(i), 'Hz')')); end #+end_src #+begin_src matlab if args.plots figure; plot(freqs, C_norm) set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Compliance - Frobenius Norm'); end #+end_src