#+TITLE: Identification of the Stewart Platform using Simscape :DRAWER: #+HTML_LINK_HOME: ./index.html #+HTML_LINK_UP: ./index.html #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :tangle matlab/identification.m #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs :END: * Introduction :ignore: We would like to extract a state space model of the Stewart Platform from the Simscape model. The inputs are: | Symbol | Meaning | |------------------------+--------------------------------------------------| | $\bm{\mathcal{F}}_{d}$ | External forces applied in {B} | | $\bm{\tau}$ | Joint forces | | $\bm{\mathcal{F}}$ | Cartesian forces applied by the Joints | | $\bm{D}_{w}$ | Fixed Based translation and rotations around {A} | The outputs are: | Symbol | Meaning | |--------------------+---------------------------------------------------------------------------| | $\bm{\mathcal{X}}$ | Relative Motion of {B} with respect to {A} | | $\bm{\mathcal{L}}$ | Joint Displacement | | $\bm{F}_{m}$ | Force Sensors in each strut | | $\bm{v}_{m}$ | Inertial Sensors located at $b_i$ measuring in the direction of the strut | #+begin_quote An important difference from basic Simulink models is that the states in a physical network are not independent in general, because some states have dependencies on other states through constraints. #+end_quote * Identification ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :results none :exports none simulinkproject('./'); #+end_src ** Simscape Model ** Initialize the Stewart Platform #+begin_src matlab stewart = initializeFramesPositions(); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); #+end_src ** Identification #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_identification'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/tau'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fext'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Vm'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Taum'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Lm'], 1, 'openoutput'); io_i = io_i + 1; %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6', ... 'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', ... 'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6', ... 'taum1', 'taum2', 'taum3', 'taum4', 'taum5', 'taum6', ... 'Lm1', 'Lm2', 'Lm3', 'Lm4', 'Lm5', 'Lm6'}; #+end_src * States as the motion of the mobile platform ** Initialize the Stewart Platform #+begin_src matlab stewart = initializeFramesPositions(); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); #+end_src ** Identification #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_identification_simple'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/tau'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Xdot'], 1, 'openoutput'); io_i = io_i + 1; %% Run the linearization G = linearize(mdl, io); % G.InputName = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'}; % G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'}; #+end_src Let's check the size of =G=: #+begin_src matlab :results replace output size(G) #+end_src #+RESULTS: : size(G) : State-space model with 12 outputs, 6 inputs, and 18 states. : 'org_babel_eoe' : ans = : 'org_babel_eoe' We expect to have only 12 states (corresponding to the 6dof of the mobile platform). #+begin_src matlab :results replace output Gm = minreal(G); #+end_src #+RESULTS: : Gm = minreal(G); : 6 states removed. And indeed, we obtain 12 states. ** Coordinate transformation We can perform the following transformation using the =ss2ss= command. #+begin_src matlab Gt = ss2ss(Gm, Gm.C); #+end_src Then, the =C= matrix of =Gt= is the unity matrix which means that the states of the state space model are equal to the measurements $\bm{Y}$. The measurements are the 6 displacement and 6 velocities of mobile platform with respect to $\{B\}$. We could perform the transformation by hand: #+begin_src matlab At = Gm.C*Gm.A*pinv(Gm.C); Bt = Gm.C*Gm.B; Ct = eye(12); Dt = zeros(12, 6); Gt = ss(At, Bt, Ct, Dt); #+end_src ** Analysis #+begin_src matlab [V,D] = eig(Gt.A); #+end_src #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) ws = imag(diag(D))/2/pi; [ws,I] = sort(ws) xi = 100*real(diag(D))./imag(diag(D)); xi = xi(I); data2orgtable([[1:length(ws(ws>0))]', ws(ws>0), xi(xi>0)], {}, {'Mode Number', 'Resonance Frequency [Hz]', 'Damping Ratio [%]'}, ' %.1f '); #+end_src #+RESULTS: | Mode Number | Resonance Frequency [Hz] | Damping Ratio [%] | |-------------+--------------------------+-------------------| | 1.0 | 174.5 | 0.9 | | 2.0 | 174.5 | 0.7 | | 3.0 | 202.1 | 0.7 | | 4.0 | 237.3 | 0.6 | | 5.0 | 237.3 | 0.5 | | 6.0 | 283.8 | 0.5 | ** Visualizing the modes To visualize the i'th mode, we may excite the system using the inputs $U_i$ such that $B U_i$ is co-linear to $\xi_i$ (the mode we want to excite). \[ U(t) = e^{\alpha t} ( ) \] Let's first sort the modes and just take the modes corresponding to a eigenvalue with a positive imaginary part. #+begin_src matlab ws = imag(diag(D)); [ws,I] = sort(ws) ws = ws(7:end); I = I(7:end); #+end_src #+begin_src matlab for i = 1:length(ws) #+end_src #+begin_src matlab i_mode = I(i); % the argument is the i'th mode #+end_src #+begin_src matlab lambda_i = D(i_mode, i_mode); xi_i = V(:,i_mode); a_i = real(lambda_i); b_i = imag(lambda_i); #+end_src Let do 10 periods of the mode. #+begin_src matlab t = linspace(0, 10/(imag(lambda_i)/2/pi), 1000); U_i = pinv(Gt.B) * real(xi_i * lambda_i * (cos(b_i * t) + 1i*sin(b_i * t))); #+end_src #+begin_src matlab U = timeseries(U_i, t); #+end_src Simulation: #+begin_src matlab load('mat/conf_simscape.mat'); set_param(conf_simscape, 'StopTime', num2str(t(end))); sim(mdl); #+end_src Save the movie of the mode shape. #+begin_src matlab smwritevideo(mdl, sprintf('figs/mode%i', i), ... 'PlaybackSpeedRatio', 1/(b_i/2/pi), ... 'FrameRate', 30, ... 'FrameSize', [800, 400]); #+end_src #+begin_src matlab end #+end_src #+name: fig:mode1 #+caption: Identified mode - 1 [[file:figs/mode1.gif]] #+name: fig:mode3 #+caption: Identified mode - 3 [[file:figs/mode3.gif]] #+name: fig:mode5 #+caption: Identified mode - 5 [[file:figs/mode5.gif]] ** Identification #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_identification'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/tau'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Lm'], 1, 'openoutput'); io_i = io_i + 1; %% Run the linearization G = linearize(mdl, io, options); % G.InputName = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'}; % G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'}; #+end_src #+begin_src matlab size(G) #+end_src ** Change of states #+begin_src matlab At = G.C*G.A*pinv(G.C); Bt = G.C*G.B; Ct = eye(12); Dt = zeros(12, 6); #+end_src #+begin_src matlab Gt = ss(At, Bt, Ct, Dt); #+end_src #+begin_src matlab size(Gt) #+end_src * Simple Model without any sensor ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :results none :exports none simulinkproject('./'); #+end_src ** Simscape Model #+begin_src matlab open 'stewart_identification_simple.slx' #+end_src ** Initialize the Stewart Platform #+begin_src matlab stewart = initializeFramesPositions(); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); #+end_src ** Identification #+begin_src matlab stateorder = {... 'stewart_platform_identification_simple/Solver Configuration/EVAL_KEY/INPUT_1_1_1',... 'stewart_platform_identification_simple/Solver Configuration/EVAL_KEY/INPUT_2_1_1',... 'stewart_platform_identification_simple/Solver Configuration/EVAL_KEY/INPUT_3_1_1',... 'stewart_platform_identification_simple/Solver Configuration/EVAL_KEY/INPUT_4_1_1',... 'stewart_platform_identification_simple/Solver Configuration/EVAL_KEY/INPUT_5_1_1',... 'stewart_platform_identification_simple/Solver Configuration/EVAL_KEY/INPUT_6_1_1',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.cylindrical_joint.Rz.q',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_2.Subsystem.cylindrical_joint.Rz.q',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_3.Subsystem.cylindrical_joint.Rz.q',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_4.Subsystem.cylindrical_joint.Rz.q',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_5.Subsystem.cylindrical_joint.Rz.q',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_6.Subsystem.cylindrical_joint.Rz.q',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.cylindrical_joint.Pz.p',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_2.Subsystem.cylindrical_joint.Pz.p',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_3.Subsystem.cylindrical_joint.Pz.p',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_4.Subsystem.cylindrical_joint.Pz.p',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_5.Subsystem.cylindrical_joint.Pz.p',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_6.Subsystem.cylindrical_joint.Pz.p',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.cylindrical_joint.Rz.w',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_2.Subsystem.cylindrical_joint.Rz.w',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_3.Subsystem.cylindrical_joint.Rz.w',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_4.Subsystem.cylindrical_joint.Rz.w',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_5.Subsystem.cylindrical_joint.Rz.w',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_6.Subsystem.cylindrical_joint.Rz.w',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.cylindrical_joint.Pz.v',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_2.Subsystem.cylindrical_joint.Pz.v',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_3.Subsystem.cylindrical_joint.Pz.v',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_4.Subsystem.cylindrical_joint.Pz.v',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_5.Subsystem.cylindrical_joint.Pz.v',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_6.Subsystem.cylindrical_joint.Pz.v',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.spherical_joint_F.S.Q',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_2.Subsystem.spherical_joint_F.S.Q',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_3.Subsystem.spherical_joint_F.S.Q',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_4.Subsystem.spherical_joint_F.S.Q',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_5.Subsystem.spherical_joint_F.S.Q',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_6.Subsystem.spherical_joint_F.S.Q',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_2.Subsystem.spherical_joint_F.S.w',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_3.Subsystem.spherical_joint_F.S.w',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_4.Subsystem.spherical_joint_F.S.w',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_5.Subsystem.spherical_joint_F.S.w',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_6.Subsystem.spherical_joint_F.S.w',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.spherical_joint_F.S.w',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.spherical_joint_M.S.Q',... 'stewart_platform_identification_simple.Stewart_Platform.Strut_1.Subsystem.spherical_joint_M.S.w'}; #+end_src #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_identification_simple'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/tau'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Xdot'], 1, 'openoutput'); io_i = io_i + 1; %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'}; G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'}; #+end_src #+begin_src matlab size(G) #+end_src #+begin_src matlab G.StateName #+end_src * Cartesian Plot From a force applied in the Cartesian frame to a displacement in the Cartesian frame. #+begin_src matlab :results none figure; hold on; plot(freqs, abs(squeeze(freqresp(G.G_cart(1, 1), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_cart(2, 1), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_cart(3, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude'); #+end_src #+begin_src matlab :results none figure; bode(G.G_cart, freqs); #+end_src * From a force to force sensor #+begin_src matlab :results none figure; hold on; plot(freqs, abs(squeeze(freqresp(G.G_forc(1, 1), freqs, 'Hz'))), 'k-', 'DisplayName', '$F_{m_i}/F_{i}$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [N/N]'); legend('location', 'southeast'); #+end_src #+begin_src matlab :results none figure; hold on; plot(freqs, abs(squeeze(freqresp(G.G_forc(1, 1), freqs, 'Hz'))), 'k-', 'DisplayName', '$F_{m_i}/F_{i}$'); plot(freqs, abs(squeeze(freqresp(G.G_forc(2, 1), freqs, 'Hz'))), 'k--', 'DisplayName', '$F_{m_j}/F_{i}$'); plot(freqs, abs(squeeze(freqresp(G.G_forc(3, 1), freqs, 'Hz'))), 'k--', 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G.G_forc(4, 1), freqs, 'Hz'))), 'k--', 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G.G_forc(5, 1), freqs, 'Hz'))), 'k--', 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G.G_forc(6, 1), freqs, 'Hz'))), 'k--', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [N/N]'); legend('location', 'southeast'); #+end_src * From a force applied in the leg to the displacement of the leg #+begin_src matlab :results none figure; hold on; plot(freqs, abs(squeeze(freqresp(G.G_legs(1, 1), freqs, 'Hz'))), 'k-', 'DisplayName', '$D_{i}/F_{i}$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]'); #+end_src #+begin_src matlab :results none figure; hold on; plot(freqs, abs(squeeze(freqresp(G.G_legs(1, 1), freqs, 'Hz'))), 'k-', 'DisplayName', '$D_{i}/F_{i}$'); plot(freqs, abs(squeeze(freqresp(G.G_legs(2, 1), freqs, 'Hz'))), 'k--', 'DisplayName', '$D_{j}/F_{i}$'); plot(freqs, abs(squeeze(freqresp(G.G_legs(3, 1), freqs, 'Hz'))), 'k--', 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G.G_legs(4, 1), freqs, 'Hz'))), 'k--', 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G.G_legs(5, 1), freqs, 'Hz'))), 'k--', 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G.G_legs(6, 1), freqs, 'Hz'))), 'k--', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]'); legend('location', 'northeast'); #+end_src * Transmissibility #+begin_src matlab :results none figure; hold on; plot(freqs, abs(squeeze(freqresp(G.G_tran(1, 1), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_tran(2, 2), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_tran(3, 3), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [m/m]'); #+end_src #+begin_src matlab :results none figure; hold on; plot(freqs, abs(squeeze(freqresp(G.G_tran(4, 4), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_tran(5, 5), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_tran(6, 6), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [$\frac{rad/s}{rad/s}$]'); #+end_src #+begin_src matlab :results none figure; hold on; plot(freqs, abs(squeeze(freqresp(G.G_tran(1, 1), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_tran(1, 2), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_tran(1, 3), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [m/m]'); #+end_src * Compliance From a force applied in the Cartesian frame to a relative displacement of the mobile platform with respect to the base. #+begin_src matlab :results none figure; hold on; plot(freqs, abs(squeeze(freqresp(G.G_comp(1, 1), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_comp(2, 2), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_comp(3, 3), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]'); #+end_src * Inertial From a force applied on the Cartesian frame to the absolute displacement of the mobile platform. #+begin_src matlab :results none figure; hold on; plot(freqs, abs(squeeze(freqresp(G.G_iner(1, 1), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_iner(2, 2), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_iner(3, 3), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]'); #+end_src