UP | HOME

Stewart Platform - Bibliography

Table of Contents

1. Built Stewart PLatforms

Actuators:

  • Short Stroke: PZT, Voice Coil, Magnetostrictive
  • Long Stroke: DC, AC, Servo + Ball Screw, Inchworm

Joints:

  • Flexible: usually for short stroke
  • Conventional

Sensors:

  • Force Sensors
  • Relative Motion Sensors: Encoders, LVDT
  • Strain Gauge
  • Inertial Sensors (Geophone, Accelerometer)
  • External Metrology

1.1. Short Stroke

University Figure Configuration Joints Actuators Sensors Application Link to bibliography
JPL fig:stewart_jpl Cubic Flexible Voice Coil (0.5 mm) Force (collocated)   spanos95_soft_activ_vibrat_isolat, rahman98_multiax Vibration Isolation (Space)
Washinton, JPL fig:stewart_ht_uw Cubic Elastomers Voice Coil (10 mm) Force, LVDT, Geophones Isolation + Pointing (Space) thayer98_stewar, thayer02_six_axis_vibrat_isolat_system, hauge04_sensor_contr_space_based_six
Wyoming fig:stewart_uw_gsp Cubic (CoM=CoK) Flexible Voice Coil Force   mcinroy99_dynam, mcinroy99_precis_fault_toler_point_using_stewar_platf, mcinroy00_desig_contr_flexur_joint_hexap, li01_simul_vibrat_isolat_point_contr, jafari03_orthog_gough_stewar_platf_microm
Brussels fig:stewart_ulb_vc Cubic Flexible Voice Coil Force Vibration Isolation hanieh03_activ_stewar, preumont07_six_axis_singl_stage_activ
SRDC fig:stewart_naval Not Cubic Ball joints Voice Coil (10 mm)     taranti01_effic_algor_vibrat_suppr
SRDC fig:stewart_pph Non-Cubic Flexible Voice Coil Accelerometers, External metrology: Eddy Current + optical Pointing chen03_payload_point_activ_vibrat_isolat
Harbin (China) fig:stewart_tang18 Cubic Flexible Voice Coil Accelerometer in each leg   chi15_desig_exper_study_vcm_based, tang18_decen_vibrat_contr_voice_coil, jiao18_dynam_model_exper_analy_stewar
Einhoven fig:stewart_beijen Almost cubic Flexible Voice Coil Force Sensor + Accelerometer Vibration Isolation beijen18_self_tunin_mimo_distur_feedf, tjepkema12_activ_ph
JPL fig:stewart_geng Cubic (6-UPU) Flexible Magnetostrictive Force (collocated), Accelerometers Vibration Isolation geng93_six_degree_of_freed_activ, geng94_six_degree_of_freed_activ, geng95_intel_contr_system_multip_degree
China fig:stewart_zhang11 Non-cubic Flexible Magnetostrictive Inertial   zhang11_six_dof
Brussels fig:stewart_ulb_pz Cubic Flexible Piezoelectric, Amplified Piezo Force Active Damping abu02_stiff_soft_stewar_platf_activ
SRDC fig:stewart_uqp Cubic   Piezoelectric (50 um) Geophone Vibration agrawal04_algor_activ_vibrat_isolat_spacec
Taiwan fig:stewart_nanoscale Cubic Flexible Piezoelectric (120 um) External capacitive   ting06_desig_stewar_nanos_platf, ting13_compos_contr_desig_stewar_nanos_platf
Taiwan fig:stewart_ting07 Non-Cubic Flexible Piezoelectric (160 um) External capacitive (LION)   ting07_measur_calib_stewar_microm_system
Harbin (China) fig:stewart_du14 6-SPS (Optimized) Flexible Piezoelectric Strain Gauge   du14_piezo_actuat_high_precis_flexib
Japan fig:stewart_furutani Non-Cubic Flexible Piezoelectric (16 um) Eddy Current Displacement Sensors Cutting machine furutani04_nanom_cuttin_machin_using_stewar
China fig:stewart_yang19 6-UPS (Cubic?) Flexible Piezoelectric Force, Position   yang19_dynam_model_decoup_contr_flexib
Shangai fig:stewart_wang16 Cubic Flexible Piezoelectric Force Sensor + Accelerometer   wang16_inves_activ_vibrat_isolat_stewar
Matra (France) fig:stewart_mais Cubic Flexible Piezoelectric (25 um) Piezo force sensors Vibration control defendini00_techn
Japan fig:stewart_torii Non-Cubic Flexible Inchworm     torii12_small_size_self_propel_stewar_platf
Netherlands fig:stewart_naves Non-Cubic Flexible 3-phase rotary motor Rotary Encoders   &naves20_desig;&naves20_t_flex

stewart_naves.jpg

Figure 1: T-flex &naves20_desig

stewart_mais.jpg

Figure 3: &defendini00_techn

stewart_zhang11.jpg

Figure 10: &zhang11_six_dof

stewart_ht_uw.jpg

Figure 16: Hood Technology Corporation (HT) and the University of Washington (UW) have designed and tested a unique hexapod design for spaceborne interferometry missions &thayer02_six_axis_vibrat_isolat_system

stewart_uw_gsp.jpg

Figure 17: UW GSP: Mutually Orthogonal Stewart Geometry &li01_simul_fault_vibrat_isolat_point

stewart_pph.jpg

Figure 18: Precision Pointing Hexapod (PPH) &chen03_payload_point_activ_vibrat_isolat

stewart_uqp.jpg

Figure 19: Ultra Quiet Platform (UQP) &agrawal04_algor_activ_vibrat_isolat_spacec

stewart_ulb_pz.jpg

Figure 20: ULB - Piezoelectric &abu02_stiff_soft_stewar_platf_activ

stewart_ulb_vc.jpg

Figure 21: ULB - Voice Coil &hanieh03_activ_stewar

1.2. Long Stroke

University Figure Configuration Joints Actuators Sensors Link to bibliography
Japan fig:stewart_cleary 6-UPS Conventional DC, gear + rack pinion Encoder, 7um res cleary91_protot_paral_manip
Seoul fig:stewart_kim00 Non-Cubic Conventional Hydraulic LVDT kim00_robus_track_contr_desig_dof_paral_manip
Xidian (China) fig:stewart_su04 Non-Cubic Conventional Servo Motor + Screwball Encoder su04_distur_rejec_high_precis_motion
Czech fig:stewart_czech 6-UPS Conventional DC, Ball Screw Absolute Linear position brezina08_ni_labview_matlab_simmec_stewar_platf_desig, houska10_desig_implem_absol_linear_posit, brezina10_contr_desig_stewar_platf_linear_actuat

stewart_kim00.jpg

Figure 23: &kim01_six

stewart_czech.jpg

Figure 25: Stewart platform from Brno University (Czech) &brezina08_ni_labview_matlab_simmec_stewar_platf_desig

2. Articles - Design Related

2.1. Flexures

From &hauge04_sensor_contr_space_based_six:

Elastomer flexures, rather than steel, reduce lateral stiffness and improve passive performance at payload resonance (damping) and at frequencies greater than 100 Hz.

Main Object Link to bibliography
Effect of flexures mcinroy02_model_desig_flexur_joint_stewar

2.2. Decoupling

Main Object Link to bibliography
Geometry for decoupling (CoM, CoK) mcinroy00_desig_contr_flexur_joint_hexap
  afzali-far16_vibrat_dynam_isotr_hexap_analy_studies

2.4. Workspace

Main Object Link to bibliography
Compute orientation bonev01_new_approac_to_orien_works
Reachable Workspace pernkopf06_works_analy_stewar_gough_type_paral_manip
Determination of the max. singularity free workspace jiang09_deter_maxim_singul_free_orien
Orientation Workspace jiang09_evaluat_repres_theor_orien_works

2.5. Modelling

2.5.1. Multi Body

2.5.2. Analytical

2.5.3. Lumped

3. Control

Different control objectives:

Sometimes, the two objectives are simultaneous, in that case multiple sensors needs to be combined in the control architecture (Section sec:control_multi_sensor).

Stewart platform, being 6DoF parallel mechanisms, have a coupled dynamics. In order to ease the control design, decoupling is generally required. Several approaches can be used (Section sec:control_decoupling).

3.1. Vibration Control and Active Damping

From &hauge04_sensor_contr_space_based_six:

In general, force sensors such as load cells, work well to measure vibration, but have difficulty with cross-axis dynamics. Inertial sensors, on the other hand, do not have this cross-axis limitation, but are usually more sensitive to payload and base dynamics and are more difficult to control due to the non-collocated nature of the sensor and actuator. Force sensors typically work well because they are not as sensitive to payload and base dynamics, but are limited in performance by a low-frequency zero pair resulting from the cross-axial stiffness. This zero pair has confused many researchers because it is very sensitive, occasionally becoming non-minimum phase. The zero pair is the current limitation in performance using load cell sensors.

3.1.1. Integral Force Feedback

University Actuators Sensors Control Main Object Link to bibliography
JPL Magnetostrictive Force (collocated), Accelerometers Two layers: Decentralized IFF, Robust Adaptive Control Two layer control for active damping and vibration isolation geng95_intel_contr_system_multip_degree
JPL Voice Coil Force (collocated) Decentralized IFF Decentralized force feedback to reduce the transmissibility spanos95_soft_activ_vibrat_isolat, rahman98_multiax
Washinton Voice Coil Force, LVDT, Geophones LQG, Force + geophones for vibration, LVDT for pointing Centralized control is no better than decentralized. Geophone + Force MISO control is good thayer98_stewar, thayer02_six_axis_vibrat_isolat_system
Wyoming Voice Coil Force Centralized (cartesian) IFF Difficult to decouple in practice obrien98_lesson
Wyoming Voice Coil Force IFF, centralized (decouple) + decentralized (coupled) Specific geometry: decoupled force plant. Better perf with centralized IFF mcinroy99_dynam, mcinroy99_precis_fault_toler_point_using_stewar_platf, mcinroy00_desig_contr_flexur_joint_hexap
Brussels APA Piezo force sensor Decentralized IFF   abu02_stiff_soft_stewar_platf_activ
Brussels Voice Coil Force Sensor Decentralized IFF Effect of flexible joints preumont07_six_axis_singl_stage_activ
Shangai Piezoelectric Force Sensor + Accelerometer Vibration isolation, HAC-LAC (IFF + FxLMS) Dynamic Model + Vibration Control wang16_inves_activ_vibrat_isolat_stewar
China     Decentralized IFF Design cubic configuration to have same modal frequencies: optimal damping of all modes yang17_dynam_isotr_desig_decen_activ
Washinton Voice Coil Force Decentralized IFF Comparison of force sensor and inertial sensors. Issue on non-minimum phase zero hauge04_sensor_contr_space_based_six
China Piezoelectric Force, Position Vibration isolation, Model-Based, Modal control: 6x PI controllers Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space yang19_dynam_model_decoup_contr_flexib

3.1.2. Sky-Hood Damping

University Actuators Sensors Control Main Object Link to bibliography
Wyoming Voice Coil Accelerometer (collocated), ext. Rx/Ry sensors Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) Decoupling, both vibration + pointing control li01_simul_vibrat_isolat_point_contr
China Voice Coil Geophone + Eddy Current (Struts, collocated) Decentralized (Sky Hook) + Centralized (modal) Control   pu11_six_degree_of_freed_activ
China Voice Coil Accelerometer in each leg Centralized Vibration Control, PI, Skyhook   abbas14_vibrat_stewar_platf
Einhoven Voice Coil 6dof Accelerometers on mobile and fixed platforms Self learning feedforward (FIR), Centralized MIMO feedback (sky hood damping)   beijen18_self_tunin_mimo_distur_feedf
Harbin (China) Voice Coil Accelerometer in each leg Decentralized vibration control Vibration Control with VCM and Decentralized control tang18_decen_vibrat_contr_voice_coil
Washinton Voice Coil Geophones Decentralized Inertial Feedback Centralized control is no better than decentralized. Geophone + Force MISO control is good thayer02_six_axis_vibrat_isolat_system
Washinton Voice Coil Geophones Decentralized Sky Hood Damping Comparison of force sensor and inertial sensors hauge04_sensor_contr_space_based_six
Harbin (China) Voice Coil Accelerometers MIMO H-Infinity, active damping Model + active damping with flexible hinges jiao18_dynam_model_exper_analy_stewar

3.1.3. Vibration Control of Narrowband Disturbances

University Actuators Sensors Control Main Object Link to bibliography
JPL Magnetostrictive Force, Accelerometers Robust Adaptive Filter Hardware implementation geng93_six_degree_of_freed_activ, geng94_six_degree_of_freed_activ
SRDC     LMS with FIR (feedforward), disturbance rejection, Decentralized (struts) PID Rejection of narrowband periodic disturbances chen03_payload_point_activ_vibrat_isolat
Wyoming Voice Coil   Adaptive sinusoidal disturbance (Phase Lock Loop)   lin03_adapt_sinus_distur_cancel_precis
SRDC Piezo Geophone (collocated) “multiple error LMS” (require measured disturbance) vs “clear box”   agrawal04_algor_activ_vibrat_isolat_spacec
China Magnetostrictive Inertial Sinusoidal vibration, adaptive filters (LMS) Design and Control of flexure joint Hexapods zhang11_six_dof
Shangai Piezoelectric Force Sensor + Accelerometer Vibration isolation, HAC-LAC (IFF + FxLMS) Dynamic Model + Vibration Control wang16_inves_activ_vibrat_isolat_stewar

3.2. Position Control

Here, the objective is to position the mobile platform with respect to an external metrology or internal metrology.

Control Strategy:

  • Decentralized P, PI or PID
  • LQR, LQG
  • H-Infinity
  • Two Layer
University Actuators Sensors Control Modelling Main Object Link to bibliography
Washinton Voice Coil Force, LVDT, Geophones LQG, Force + geophones for vibration, LVDT for pointing FEM => State Space Centralized control is no better than decentralized. Geophone + Force MISO control is good thayer98_stewar, thayer02_six_axis_vibrat_isolat_system
Wyoming Voice Coil Force, LVDT IFF, centralized (decouple) + decentralized (coupled) Lumped Specific geometry: decoupled force plant. Better perf with centralized IFF mcinroy99_dynam, mcinroy99_precis_fault_toler_point_using_stewar_platf, mcinroy00_desig_contr_flexur_joint_hexap
Seoul Hydraulic LVDT Decentralized (strut) vs Centralized (cartesian)     kim00_robus_track_contr_desig_dof_paral_manip
Wyoming Voice Coil Accelerometer (collocated), ext. Rx/Ry sensors Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) Analytical equations Decoupling, both vibration + pointing control li01_simul_vibrat_isolat_point_contr
Japan APA Eddy current displacement Decentralized (struts) PI + LPF control     furutani04_nanom_cuttin_machin_using_stewar
China Voice Coil Geophone + Eddy Current (Struts, collocated) Decentralized (Sky Hook) + Centralized (modal) Control     pu11_six_degree_of_freed_activ
Harbin (China) PZT Piezo Strain Gauge Decentralized position feedback   Workspace, Stiffness analyzed du14_piezo_actuat_high_precis_flexib
China Piezoelectric Leg length Tracking control, ADRC, State observer Analytical Use of ADRC for tracking control of cubic hexapod min19_high_precis_track_cubic_stewar
China Piezoelectric Force, Position Vibration isolation, Model-Based, Modal control: 6x PI controllers Solid/Flexible Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space yang19_dynam_model_decoup_contr_flexib

From: yang19_dynam_model_decoup_contr_flexib:

On the other hand, the traditional modal decoupled control strategy cannot deal with the flexible Stewart platform governed by Eq. (34) because it is impossible to achieve simultaneous diagonalization of the mass, damping and stiffness matrices. To make the six-DOF system decoupled into six single-DOF isolators, we design a new controller based on the leg’s force and position feedback. The idea is to synthesize the control force that can compensate the parasitic bending and torsional torques of the flexible joints and simultaneously achieve diagonalization of the matrices M, C and K.

3.3. Multi Sensor Control

Improvement by the use of several sensors:

  • HAC-LAC
  • Two sensor control
  • Sensor Fusion

Comparison between “two sensor control” and “sensor fusion” is given in &beijen14_two_sensor_contr_activ_vibrat.

3.3.1. Two sensor control

University Actuators Sensors Control Main Object Link to bibliography
Washinton Voice Coil Force and Inertial LQG, Decentralized, Sensor Fusion Combine force/inertial sensors. Comparison of force sensor and inertial sensors. Issue on non-minimum phase zero hauge04_sensor_contr_space_based_six
Netherlands Voice Coil   Sensor Fusion, Two Sensor Control   tjepkema12_activ_ph

3.3.2. HAC-LAC

University Actuators Sensors Control Main Object Link to bibliography
JPL Magnetostrictive Force (collocated), Accelerometers Two layers: Decentralized IFF, Robust Adaptive Control Two layer control for active damping and vibration isolation geng95_intel_contr_system_multip_degree
Shangai Piezoelectric Force Sensor + Accelerometer Vibration isolation, HAC-LAC (IFF + FxLMS) Dynamic Model + Vibration Control wang16_inves_activ_vibrat_isolat_stewar
Wyoming Voice Coil Accelerometer (collocated), ext. Rx/Ry sensors Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) Decoupling, both vibration + pointing control li01_simul_vibrat_isolat_point_contr
China Voice Coil Geophone + Eddy Current (Struts, collocated) Decentralized (Sky Hook) + Centralized (modal) Control   pu11_six_degree_of_freed_activ
China Voice Coil Force sensors (strus) + accelerometer (cartesian) Decentralized Force Feedback + Centralized H2 control based on accelerometers   xie17_model_contr_hybrid_passiv_activ

3.3.3. Sensor Fusion

University Actuators Sensors Control Main Object Link to bibliography
Netherlands Voice Coil Force (HF) and Inertial (LF) Sensor Fusion, Two Sensor Control   tjepkema12_activ_ph, tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip
Washinton Voice Coil Force (HF) and Inertial (LF) LQG, Decentralized, Sensor Fusion Combine force/inertial sensors. Comparison of force sensor and inertial sensors. Issue on non-minimum phase zero hauge04_sensor_contr_space_based_six

3.3.4. Other Strategies

University Actuators Sensors Control Main Object Link to bibliography
China Piezoelectric Force, Position Vibration isolation, Model-Based, Modal control: 6x PI controllers Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space yang19_dynam_model_decoup_contr_flexib
Washinton Voice Coil Force, LVDT, Geophones LQG, Force + geophones for vibration, LVDT for pointing Centralized control is no better than decentralized. Geophone + Force MISO control is good thayer98_stewar, thayer02_six_axis_vibrat_isolat_system
Wyoming Voice Coil Force IFF, centralized (decouple) + decentralized (coupled) Specific geometry: decoupled force plant. Better perf with centralized IFF mcinroy99_dynam, mcinroy99_precis_fault_toler_point_using_stewar_platf, mcinroy00_desig_contr_flexur_joint_hexap

3.4. Decoupling Strategies

Different strategies:

  • Jacobian decoupling: in the cartesian frame or in the frame of the struts
  • Modal decoupling
  • SVD decoupling

Identify Jacobian for better decoupling: cheng04_multi_body_system_model_gough, gexue04_vibrat_contr_with_stewar_paral_mechan.

3.4.1. Jacobian - Struts

Japan APA Eddy current displacement Decentralized (struts) PI + LPF control furutani04_nanom_cuttin_machin_using_stewar
Harbin (China) PZT Piezo Strain Gauge Decentralized position feedback du14_piezo_actuat_high_precis_flexib

3.4.2. Jacobian - Cartesian

Wyoming Voice Coil Force Cartesian frame decoupling obrien98_lesson
Wyoming Voice Coil Force IFF, Cartesian Frame, Jacobians mcinroy99_dynam, mcinroy99_precis_fault_toler_point_using_stewar_platf, mcinroy00_desig_contr_flexur_joint_hexap
Seoul Hydraulic LVDT Decentralized (strut) vs Centralized (cartesian) kim00_robus_track_contr_desig_dof_paral_manip
Wyoming Voice Coil Accelerometer (collocated), ext. Rx/Ry sensors Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) li01_simul_vibrat_isolat_point_contr
China Voice Coil Accelerometer in each leg Centralized Vibration Control, PI, Skyhook abbas14_vibrat_stewar_platf

3.4.3. Modal Decoupling

China Voice Coil Geophone + Eddy Current (Struts, collocated) Decentralized (Sky Hook) + Centralized (modal) Control pu11_six_degree_of_freed_activ
China Piezoelectric Force, Position Vibration isolation, Model-Based, Modal control: 6x PI controllers yang19_dynam_model_decoup_contr_flexib

3.4.4. Multivariable Control

From &thayer02_six_axis_vibrat_isolat_system:

Experimental closed-loopcontrol results using the hexapod have shown that controllers designed using a decentralized single-strut design work well when compared to full multivariable methodologies.

China PZT Geophone (struts) H-Infinity and mu-synthesis lei08_multi_objec_robus_activ_vibrat
China Voice Coil Force sensors (strus) + accelerometer (cartesian) Decentralized Force Feedback + Centralized H2 control based on accelerometers xie17_model_contr_hybrid_passiv_activ
Harbin (China) Voice Coil Accelerometers MIMO H-Infinity, active damping jiao18_dynam_model_exper_analy_stewar

3.5. Long Stroke Stewart Platforms

Link to bibliography University Actuators Sensors Control Main Object
cleary91_protot_paral_manip Japan DC, gear + rack pinion Encoder, 7um res Decentralized (struts), PID control Singular configuration analysis, workspace
su04_distur_rejec_high_precis_motion Xidian (China)        
huang05_smoot_stewar Taiwan        
brezina08_ni_labview_matlab_simmec_stewar_platf_desig, houska10_desig_implem_absol_linear_posit Czech DC     Modeling with sim-mechanics
molina08_simul_stewar Brazil       Simulation with Matlab/Simulink
yang10_model_dof_simul_simmec China     Decentralized PID Simulation with Simulink/SimMechanics
kim00_robus_track_contr_desig_dof_paral_manip Seoul Hydraulic LVDT Decentralized (strut) vs Centralized (cartesian)  

4. Main Bibliography

ref.bib

Author: Dehaeze Thomas

Created: 2024-09-25 Wed 15:17