<?xml version="1.0" encoding="utf-8"?> <?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2020-03-02 lun. 17:57 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>Identification of the Stewart Platform using Simscape</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <style type="text/css"> <!--/*--><![CDATA[/*><!--*/ .title { text-align: center; margin-bottom: .2em; } .subtitle { text-align: center; font-size: medium; font-weight: bold; margin-top:0; } .todo { font-family: monospace; color: red; } .done { font-family: monospace; color: green; } .priority { font-family: monospace; color: orange; } .tag { background-color: #eee; font-family: monospace; padding: 2px; font-size: 80%; font-weight: normal; } .timestamp { color: #bebebe; } .timestamp-kwd { color: #5f9ea0; } .org-right { margin-left: auto; margin-right: 0px; text-align: right; } .org-left { margin-left: 0px; margin-right: auto; text-align: left; } .org-center { margin-left: auto; margin-right: auto; text-align: center; } .underline { text-decoration: underline; } #postamble p, #preamble p { font-size: 90%; margin: .2em; } p.verse { margin-left: 3%; } pre { border: 1px solid #ccc; box-shadow: 3px 3px 3px #eee; padding: 8pt; font-family: monospace; overflow: auto; margin: 1.2em; } pre.src { position: relative; overflow: visible; padding-top: 1.2em; } pre.src:before { display: none; position: absolute; background-color: white; top: -10px; right: 10px; padding: 3px; border: 1px solid black; } pre.src:hover:before { display: inline;} /* Languages per Org manual */ pre.src-asymptote:before { content: 'Asymptote'; } pre.src-awk:before { content: 'Awk'; } pre.src-C:before { content: 'C'; } /* pre.src-C++ doesn't work in CSS */ pre.src-clojure:before { content: 'Clojure'; } pre.src-css:before { content: 'CSS'; } pre.src-D:before { content: 'D'; } pre.src-ditaa:before { content: 'ditaa'; } pre.src-dot:before { content: 'Graphviz'; } pre.src-calc:before { content: 'Emacs Calc'; } pre.src-emacs-lisp:before { content: 'Emacs Lisp'; } pre.src-fortran:before { content: 'Fortran'; } pre.src-gnuplot:before { content: 'gnuplot'; } pre.src-haskell:before { content: 'Haskell'; } pre.src-hledger:before { content: 'hledger'; } pre.src-java:before { content: 'Java'; } pre.src-js:before { content: 'Javascript'; } pre.src-latex:before { content: 'LaTeX'; } pre.src-ledger:before { content: 'Ledger'; } pre.src-lisp:before { content: 'Lisp'; } pre.src-lilypond:before { content: 'Lilypond'; } pre.src-lua:before { content: 'Lua'; } pre.src-matlab:before { content: 'MATLAB'; } pre.src-mscgen:before { content: 'Mscgen'; } pre.src-ocaml:before { content: 'Objective Caml'; } pre.src-octave:before { content: 'Octave'; } pre.src-org:before { content: 'Org mode'; } pre.src-oz:before { content: 'OZ'; } pre.src-plantuml:before { content: 'Plantuml'; } pre.src-processing:before { content: 'Processing.js'; } pre.src-python:before { content: 'Python'; } pre.src-R:before { content: 'R'; } pre.src-ruby:before { content: 'Ruby'; } pre.src-sass:before { content: 'Sass'; } pre.src-scheme:before { content: 'Scheme'; } pre.src-screen:before { content: 'Gnu Screen'; } pre.src-sed:before { content: 'Sed'; } pre.src-sh:before { content: 'shell'; } pre.src-sql:before { content: 'SQL'; } pre.src-sqlite:before { content: 'SQLite'; } /* additional languages in org.el's org-babel-load-languages alist */ pre.src-forth:before { content: 'Forth'; } pre.src-io:before { content: 'IO'; } pre.src-J:before { content: 'J'; } pre.src-makefile:before { content: 'Makefile'; } pre.src-maxima:before { content: 'Maxima'; } pre.src-perl:before { content: 'Perl'; } pre.src-picolisp:before { content: 'Pico Lisp'; } pre.src-scala:before { content: 'Scala'; } pre.src-shell:before { content: 'Shell Script'; } pre.src-ebnf2ps:before { content: 'ebfn2ps'; } /* additional language identifiers per "defun org-babel-execute" in ob-*.el */ pre.src-cpp:before { content: 'C++'; } pre.src-abc:before { content: 'ABC'; } pre.src-coq:before { content: 'Coq'; } pre.src-groovy:before { content: 'Groovy'; } /* additional language identifiers from org-babel-shell-names in ob-shell.el: ob-shell is the only babel language using a lambda to put the execution function name together. */ pre.src-bash:before { content: 'bash'; } pre.src-csh:before { content: 'csh'; } pre.src-ash:before { content: 'ash'; } pre.src-dash:before { content: 'dash'; } pre.src-ksh:before { content: 'ksh'; } pre.src-mksh:before { content: 'mksh'; } pre.src-posh:before { content: 'posh'; } /* Additional Emacs modes also supported by the LaTeX listings package */ pre.src-ada:before { content: 'Ada'; } pre.src-asm:before { content: 'Assembler'; } pre.src-caml:before { content: 'Caml'; } pre.src-delphi:before { content: 'Delphi'; } pre.src-html:before { content: 'HTML'; } pre.src-idl:before { content: 'IDL'; } pre.src-mercury:before { content: 'Mercury'; } pre.src-metapost:before { content: 'MetaPost'; } pre.src-modula-2:before { content: 'Modula-2'; } pre.src-pascal:before { content: 'Pascal'; } pre.src-ps:before { content: 'PostScript'; } pre.src-prolog:before { content: 'Prolog'; } pre.src-simula:before { content: 'Simula'; } pre.src-tcl:before { content: 'tcl'; } pre.src-tex:before { content: 'TeX'; } pre.src-plain-tex:before { content: 'Plain TeX'; } pre.src-verilog:before { content: 'Verilog'; } pre.src-vhdl:before { content: 'VHDL'; } pre.src-xml:before { content: 'XML'; } pre.src-nxml:before { content: 'XML'; } /* add a generic configuration mode; LaTeX export needs an additional (add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */ pre.src-conf:before { content: 'Configuration File'; } table { border-collapse:collapse; } caption.t-above { caption-side: top; } caption.t-bottom { caption-side: bottom; } td, th { vertical-align:top; } th.org-right { text-align: center; } th.org-left { text-align: center; } th.org-center { text-align: center; } td.org-right { text-align: right; } td.org-left { text-align: left; } td.org-center { text-align: center; } dt { font-weight: bold; } .footpara { display: inline; } .footdef { margin-bottom: 1em; } .figure { padding: 1em; } .figure p { text-align: center; } .equation-container { display: table; text-align: center; width: 100%; } .equation { vertical-align: middle; } .equation-label { display: table-cell; text-align: right; vertical-align: middle; } .inlinetask { padding: 10px; border: 2px solid gray; margin: 10px; background: #ffffcc; } #org-div-home-and-up { text-align: right; font-size: 70%; white-space: nowrap; } textarea { overflow-x: auto; } .linenr { font-size: smaller } .code-highlighted { background-color: #ffff00; } .org-info-js_info-navigation { border-style: none; } #org-info-js_console-label { font-size: 10px; font-weight: bold; white-space: nowrap; } .org-info-js_search-highlight { background-color: #ffff00; color: #000000; font-weight: bold; } .org-svg { width: 90%; } /*]]>*/--> </style> <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/> <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/> <script src="./js/jquery.min.js"></script> <script src="./js/bootstrap.min.js"></script> <script src="./js/jquery.stickytableheaders.min.js"></script> <script src="./js/readtheorg.js"></script> <script type="text/javascript"> // @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later <!--/*--><![CDATA[/*><!--*/ function CodeHighlightOn(elem, id) { var target = document.getElementById(id); if(null != target) { elem.cacheClassElem = elem.className; elem.cacheClassTarget = target.className; target.className = "code-highlighted"; elem.className = "code-highlighted"; } } function CodeHighlightOff(elem, id) { var target = document.getElementById(id); if(elem.cacheClassElem) elem.className = elem.cacheClassElem; if(elem.cacheClassTarget) target.className = elem.cacheClassTarget; } /*]]>*///--> // @license-end </script> <script> MathJax = { tex: { macros: { bm: ["\\boldsymbol{#1}",1], } } }; </script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="./index.html"> UP </a> | <a accesskey="H" href="./index.html"> HOME </a> </div><div id="content"> <h1 class="title">Identification of the Stewart Platform using Simscape</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#orgcb2f4c2">1. Modal Analysis of the Stewart Platform</a> <ul> <li><a href="#org66d09e9">1.1. Initialize the Stewart Platform</a></li> <li><a href="#org8b1c587">1.2. Identification</a></li> <li><a href="#orge68adea">1.3. Coordinate transformation</a></li> <li><a href="#org4973ae1">1.4. Analysis</a></li> <li><a href="#orge7b97c8">1.5. Visualizing the modes</a></li> </ul> </li> <li><a href="#org2891722">2. Transmissibility Analysis</a> <ul> <li><a href="#org55d2544">2.1. Initialize the Stewart platform</a></li> <li><a href="#org5338f20">2.2. Transmissibility</a></li> </ul> </li> <li><a href="#orgc94edbd">3. Compliance Analysis</a> <ul> <li><a href="#org499fd6a">3.1. Initialize the Stewart platform</a></li> <li><a href="#org1177029">3.2. Compliance</a></li> </ul> </li> <li><a href="#org68ca336">4. Functions</a> <ul> <li><a href="#org487c4d4">4.1. Compute the Transmissibility</a> <ul> <li><a href="#org3cf1d13">Function description</a></li> <li><a href="#org726b57d">Optional Parameters</a></li> <li><a href="#org4629501">Identification of the Transmissibility Matrix</a></li> <li><a href="#org1019eaf">Computation of the Frobenius norm</a></li> </ul> </li> <li><a href="#org50e35a6">4.2. Compute the Compliance</a> <ul> <li><a href="#orgf1e6c32">Function description</a></li> <li><a href="#orgda14a2f">Optional Parameters</a></li> <li><a href="#orgef06b63">Identification of the Compliance Matrix</a></li> <li><a href="#orgc21ec39">Computation of the Frobenius norm</a></li> </ul> </li> </ul> </li> </ul> </div> </div> <p> In this document, we discuss the various methods to identify the behavior of the Stewart platform. </p> <ul class="org-ul"> <li><a href="#org7981e88">1</a></li> <li><a href="#orga989615">2</a></li> <li><a href="#org4579374">3</a></li> </ul> <div id="outline-container-orgcb2f4c2" class="outline-2"> <h2 id="orgcb2f4c2"><span class="section-number-2">1</span> Modal Analysis of the Stewart Platform</h2> <div class="outline-text-2" id="text-1"> <p> <a id="org7981e88"></a> </p> </div> <div id="outline-container-org66d09e9" class="outline-3"> <h3 id="org66d09e9"><span class="section-number-3">1.1</span> Initialize the Stewart Platform</h3> <div class="outline-text-3" id="text-1-1"> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); </pre> </div> </div> </div> <div id="outline-container-org8b1c587" class="outline-3"> <h3 id="org8b1c587"><span class="section-number-3">1.2</span> Identification</h3> <div class="outline-text-3" id="text-1-2"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_model'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span> io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span> io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 2, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Velocity of {B} w.r.t. {A}</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> G = linearize(mdl, io); <span class="org-comment">% G.InputName = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'};</span> <span class="org-comment">% G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'};</span> </pre> </div> <p> Let’s check the size of <code>G</code>: </p> <div class="org-src-container"> <pre class="src src-matlab">size(G) </pre> </div> <pre class="example"> size(G) State-space model with 12 outputs, 6 inputs, and 18 states. 'org_babel_eoe' ans = 'org_babel_eoe' </pre> <p> We expect to have only 12 states (corresponding to the 6dof of the mobile platform). </p> <div class="org-src-container"> <pre class="src src-matlab">Gm = minreal(G); </pre> </div> <pre class="example"> Gm = minreal(G); 6 states removed. </pre> <p> And indeed, we obtain 12 states. </p> </div> </div> <div id="outline-container-orge68adea" class="outline-3"> <h3 id="orge68adea"><span class="section-number-3">1.3</span> Coordinate transformation</h3> <div class="outline-text-3" id="text-1-3"> <p> We can perform the following transformation using the <code>ss2ss</code> command. </p> <div class="org-src-container"> <pre class="src src-matlab">Gt = ss2ss(Gm, Gm.C); </pre> </div> <p> Then, the <code>C</code> matrix of <code>Gt</code> is the unity matrix which means that the states of the state space model are equal to the measurements \(\bm{Y}\). </p> <p> The measurements are the 6 displacement and 6 velocities of mobile platform with respect to \(\{B\}\). </p> <p> We could perform the transformation by hand: </p> <div class="org-src-container"> <pre class="src src-matlab">At = Gm.C<span class="org-type">*</span>Gm.A<span class="org-type">*</span>pinv(Gm.C); Bt = Gm.C<span class="org-type">*</span>Gm.B; Ct = eye(12); Dt = zeros(12, 6); Gt = ss(At, Bt, Ct, Dt); </pre> </div> </div> </div> <div id="outline-container-org4973ae1" class="outline-3"> <h3 id="org4973ae1"><span class="section-number-3">1.4</span> Analysis</h3> <div class="outline-text-3" id="text-1-4"> <div class="org-src-container"> <pre class="src src-matlab">[V,D] = eig(Gt.A); </pre> </div> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <colgroup> <col class="org-right" /> <col class="org-right" /> <col class="org-right" /> </colgroup> <thead> <tr> <th scope="col" class="org-right">Mode Number</th> <th scope="col" class="org-right">Resonance Frequency [Hz]</th> <th scope="col" class="org-right">Damping Ratio [%]</th> </tr> </thead> <tbody> <tr> <td class="org-right">1.0</td> <td class="org-right">780.6</td> <td class="org-right">0.4</td> </tr> <tr> <td class="org-right">2.0</td> <td class="org-right">780.6</td> <td class="org-right">0.3</td> </tr> <tr> <td class="org-right">3.0</td> <td class="org-right">903.9</td> <td class="org-right">0.3</td> </tr> <tr> <td class="org-right">4.0</td> <td class="org-right">1061.4</td> <td class="org-right">0.3</td> </tr> <tr> <td class="org-right">5.0</td> <td class="org-right">1061.4</td> <td class="org-right">0.2</td> </tr> <tr> <td class="org-right">6.0</td> <td class="org-right">1269.6</td> <td class="org-right">0.2</td> </tr> </tbody> </table> </div> </div> <div id="outline-container-orge7b97c8" class="outline-3"> <h3 id="orge7b97c8"><span class="section-number-3">1.5</span> Visualizing the modes</h3> <div class="outline-text-3" id="text-1-5"> <p> To visualize the i’th mode, we may excite the system using the inputs \(U_i\) such that \(B U_i\) is co-linear to \(\xi_i\) (the mode we want to excite). </p> <p> \[ U(t) = e^{\alpha t} ( ) \] </p> <p> Let’s first sort the modes and just take the modes corresponding to a eigenvalue with a positive imaginary part. </p> <div class="org-src-container"> <pre class="src src-matlab">ws = imag(diag(D)); [ws,I] = sort(ws) ws = ws(7<span class="org-type">:</span>end); I = I(7<span class="org-type">:</span>end); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(ws)</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">i_mode = I(<span class="org-constant">i</span>); <span class="org-comment">% the argument is the i'th mode</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">lambda_i = D(i_mode, i_mode); xi_i = V(<span class="org-type">:</span>,i_mode); a_i = real(lambda_i); b_i = imag(lambda_i); </pre> </div> <p> Let do 10 periods of the mode. </p> <div class="org-src-container"> <pre class="src src-matlab">t = linspace(0, 10<span class="org-type">/</span>(imag(lambda_i)<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span>), 1000); U_i = pinv(Gt.B) <span class="org-type">*</span> real(xi_i <span class="org-type">*</span> lambda_i <span class="org-type">*</span> (cos(b_i <span class="org-type">*</span> t) <span class="org-type">+</span> 1<span class="org-constant">i</span><span class="org-type">*</span>sin(b_i <span class="org-type">*</span> t))); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">U = timeseries(U_i, t); </pre> </div> <p> Simulation: </p> <div class="org-src-container"> <pre class="src src-matlab">load(<span class="org-string">'mat/conf_simscape.mat'</span>); <span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simscape</span>, <span class="org-string">'StopTime'</span>, num2str(t(<span class="org-variable-name">end</span>))); <span class="org-matlab-simulink-keyword">sim</span>(mdl); </pre> </div> <p> Save the movie of the mode shape. </p> <div class="org-src-container"> <pre class="src src-matlab">smwritevideo(mdl, sprintf(<span class="org-string">'figs/mode%i'</span>, <span class="org-constant">i</span>), ... <span class="org-string">'PlaybackSpeedRatio'</span>, 1<span class="org-type">/</span>(b_i<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span>), ... <span class="org-string">'FrameRate'</span>, 30, ... <span class="org-string">'FrameSize'</span>, [800, 400]); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">end</span> </pre> </div> <div id="orgb15855a" class="figure"> <p><img src="figs/mode1.gif" alt="mode1.gif" /> </p> <p><span class="figure-number">Figure 1: </span>Identified mode - 1</p> </div> <div id="org1816e59" class="figure"> <p><img src="figs/mode3.gif" alt="mode3.gif" /> </p> <p><span class="figure-number">Figure 2: </span>Identified mode - 3</p> </div> <div id="org01c8dca" class="figure"> <p><img src="figs/mode5.gif" alt="mode5.gif" /> </p> <p><span class="figure-number">Figure 3: </span>Identified mode - 5</p> </div> </div> </div> </div> <div id="outline-container-org2891722" class="outline-2"> <h2 id="org2891722"><span class="section-number-2">2</span> Transmissibility Analysis</h2> <div class="outline-text-2" id="text-2"> <p> <a id="orga989615"></a> </p> </div> <div id="outline-container-org55d2544" class="outline-3"> <h3 id="org55d2544"><span class="section-number-3">2.1</span> Initialize the Stewart platform</h3> <div class="outline-text-3" id="text-2-1"> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3); </pre> </div> <p> We set the rotation point of the ground to be at the same point at frames \(\{A\}\) and \(\{B\}\). </p> <div class="org-src-container"> <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A); payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>); controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); </pre> </div> </div> </div> <div id="outline-container-org5338f20" class="outline-3"> <h3 id="org5338f20"><span class="section-number-3">2.2</span> Transmissibility</h3> <div class="outline-text-3" id="text-2-2"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_model'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/D_w'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span> io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> T = linearize(mdl, io, options); T.InputName = {<span class="org-string">'Wdx'</span>, <span class="org-string">'Wdy'</span>, <span class="org-string">'Wdz'</span>, <span class="org-string">'Wrx'</span>, <span class="org-string">'Wry'</span>, <span class="org-string">'Wrz'</span>}; T.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>}; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">freqs = logspace(1, 4, 1000); <span class="org-type">figure</span>; <span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span> <span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span> subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy); hold on; plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); ylim([1e<span class="org-type">-</span>5, 10]); xlim([freqs(1), freqs(end)]); <span class="org-keyword">if</span> ix <span class="org-type"><</span> 6 xticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">if</span> iy <span class="org-type">></span> 1 yticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">end</span> <span class="org-keyword">end</span> </pre> </div> <p> From <a class='org-ref-reference' href="#preumont07_six_axis_singl_stage_activ">preumont07_six_axis_singl_stage_activ</a>, one can use the Frobenius norm of the transmissibility matrix to obtain a scalar indicator of the transmissibility performance of the system: </p> \begin{align*} \| \bm{T}(\omega) \| &= \sqrt{\text{Trace}[\bm{T}(\omega) \bm{T}(\omega)^H]}\\ &= \sqrt{\Sigma_{i=1}^6 \Sigma_{j=1}^6 |T_{ij}|^2} \end{align*} <div class="org-src-container"> <pre class="src src-matlab">freqs = logspace(1, 4, 1000); T_norm = zeros(length(freqs), 1); <span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span> T_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>)); <span class="org-keyword">end</span> </pre> </div> <p> And we normalize by a factor \(\sqrt{6}\) to obtain a performance metric comparable to the transmissibility of a one-axis isolator: \[ \Gamma(\omega) = \|\bm{T}(\omega)\| / \sqrt{6} \] </p> <div class="org-src-container"> <pre class="src src-matlab">Gamma = T_norm<span class="org-type">/</span>sqrt(6); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-type">figure</span>; plot(freqs, Gamma) <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); </pre> </div> </div> </div> </div> <div id="outline-container-orgc94edbd" class="outline-2"> <h2 id="orgc94edbd"><span class="section-number-2">3</span> Compliance Analysis</h2> <div class="outline-text-2" id="text-3"> <p> <a id="org4579374"></a> </p> </div> <div id="outline-container-org499fd6a" class="outline-3"> <h3 id="org499fd6a"><span class="section-number-3">3.1</span> Initialize the Stewart platform</h3> <div class="outline-text-3" id="text-3-1"> <div class="org-src-container"> <pre class="src src-matlab">stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3); </pre> </div> <p> We set the rotation point of the ground to be at the same point at frames \(\{A\}\) and \(\{B\}\). </p> <div class="org-src-container"> <pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>); payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>); controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>); </pre> </div> </div> </div> <div id="outline-container-org1177029" class="outline-3"> <h3 id="org1177029"><span class="section-number-3">3.2</span> Compliance</h3> <div class="outline-text-3" id="text-3-2"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_model'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/F_ext'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span> io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> C = linearize(mdl, io, options); C.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>}; C.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>}; </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">freqs = logspace(1, 4, 1000); <span class="org-type">figure</span>; <span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span> <span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span> subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy); hold on; plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); ylim([1e<span class="org-type">-</span>10, 1e<span class="org-type">-</span>3]); xlim([freqs(1), freqs(end)]); <span class="org-keyword">if</span> ix <span class="org-type"><</span> 6 xticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">if</span> iy <span class="org-type">></span> 1 yticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">end</span> <span class="org-keyword">end</span> </pre> </div> <p> We can try to use the Frobenius norm to obtain a scalar value representing the 6-dof compliance of the Stewart platform. </p> <div class="org-src-container"> <pre class="src src-matlab">freqs = logspace(1, 4, 1000); C_norm = zeros(length(freqs), 1); <span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span> C_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>)); <span class="org-keyword">end</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-type">figure</span>; plot(freqs, C_norm) <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); </pre> </div> </div> </div> </div> <div id="outline-container-org68ca336" class="outline-2"> <h2 id="org68ca336"><span class="section-number-2">4</span> Functions</h2> <div class="outline-text-2" id="text-4"> </div> <div id="outline-container-org487c4d4" class="outline-3"> <h3 id="org487c4d4"><span class="section-number-3">4.1</span> Compute the Transmissibility</h3> <div class="outline-text-3" id="text-4-1"> <p> <a id="orgbca579c"></a> </p> </div> <div id="outline-container-org3cf1d13" class="outline-4"> <h4 id="org3cf1d13">Function description</h4> <div class="outline-text-4" id="text-org3cf1d13"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[T, T_norm, freqs]</span> = <span class="org-function-name">computeTransmissibility</span>(<span class="org-variable-name">args</span>) <span class="org-comment">% computeTransmissibility -</span> <span class="org-comment">%</span> <span class="org-comment">% Syntax: [T, T_norm, freqs] = computeTransmissibility(args)</span> <span class="org-comment">%</span> <span class="org-comment">% Inputs:</span> <span class="org-comment">% - args - Structure with the following fields:</span> <span class="org-comment">% - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm</span> <span class="org-comment">% - freqs [] - Frequency vector to estimate the Frobenius norm</span> <span class="org-comment">%</span> <span class="org-comment">% Outputs:</span> <span class="org-comment">% - T [6x6 ss] - Transmissibility matrix</span> <span class="org-comment">% - T_norm [length(freqs)x1] - Frobenius norm of the Transmissibility matrix</span> <span class="org-comment">% - freqs [length(freqs)x1] - Frequency vector in [Hz]</span> </pre> </div> </div> </div> <div id="outline-container-org726b57d" class="outline-4"> <h4 id="org726b57d">Optional Parameters</h4> <div class="outline-text-4" id="text-org726b57d"> <div class="org-src-container"> <pre class="src src-matlab">arguments args.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span> args.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000) <span class="org-keyword">end</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">freqs = args.freqs; </pre> </div> </div> </div> <div id="outline-container-org4629501" class="outline-4"> <h4 id="org4629501">Identification of the Transmissibility Matrix</h4> <div class="outline-text-4" id="text-org4629501"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_model'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/D_w'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span> io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> T = linearize(mdl, io, options); T.InputName = {<span class="org-string">'Wdx'</span>, <span class="org-string">'Wdy'</span>, <span class="org-string">'Wdz'</span>, <span class="org-string">'Wrx'</span>, <span class="org-string">'Wry'</span>, <span class="org-string">'Wrz'</span>}; T.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>}; </pre> </div> <p> If wanted, the 6x6 transmissibility matrix is plotted. </p> <div class="org-src-container"> <pre class="src src-matlab">p_handle = zeros(6<span class="org-type">*</span>6,1); <span class="org-keyword">if</span> args.plots fig = <span class="org-type">figure</span>; <span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span> <span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span> p_handle((ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy) = subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy); hold on; plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); <span class="org-keyword">if</span> ix <span class="org-type"><</span> 6 xticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">if</span> iy <span class="org-type">></span> 1 yticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">end</span> <span class="org-keyword">end</span> linkaxes(p_handle, <span class="org-string">'xy'</span>) xlim([freqs(1), freqs(end)]); ylim([1e<span class="org-type">-</span>5, 1e2]); han = <span class="org-type">axes</span>(fig, <span class="org-string">'visible'</span>, <span class="org-string">'off'</span>); han.XLabel.Visible = <span class="org-string">'on'</span>; han.YLabel.Visible = <span class="org-string">'on'</span>; xlabel(han, <span class="org-string">'Frequency [Hz]'</span>); ylabel(han, <span class="org-string">'Transmissibility [m/m]'</span>); <span class="org-keyword">end</span> </pre> </div> </div> </div> <div id="outline-container-org1019eaf" class="outline-4"> <h4 id="org1019eaf">Computation of the Frobenius norm</h4> <div class="outline-text-4" id="text-org1019eaf"> <div class="org-src-container"> <pre class="src src-matlab">T_norm = zeros(length(freqs), 1); <span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span> T_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>)); <span class="org-keyword">end</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">T_norm = T_norm<span class="org-type">/</span>sqrt(6); </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">if</span> args.plots <span class="org-type">figure</span>; plot(freqs, T_norm) <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'Transmissibility - Frobenius Norm'</span>); <span class="org-keyword">end</span> </pre> </div> </div> </div> </div> <div id="outline-container-org50e35a6" class="outline-3"> <h3 id="org50e35a6"><span class="section-number-3">4.2</span> Compute the Compliance</h3> <div class="outline-text-3" id="text-4-2"> <p> <a id="org0a73574"></a> </p> </div> <div id="outline-container-orgf1e6c32" class="outline-4"> <h4 id="orgf1e6c32">Function description</h4> <div class="outline-text-4" id="text-orgf1e6c32"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[C, C_norm, freqs]</span> = <span class="org-function-name">computeCompliance</span>(<span class="org-variable-name">args</span>) <span class="org-comment">% computeCompliance -</span> <span class="org-comment">%</span> <span class="org-comment">% Syntax: [C, C_norm, freqs] = computeCompliance(args)</span> <span class="org-comment">%</span> <span class="org-comment">% Inputs:</span> <span class="org-comment">% - args - Structure with the following fields:</span> <span class="org-comment">% - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm</span> <span class="org-comment">% - freqs [] - Frequency vector to estimate the Frobenius norm</span> <span class="org-comment">%</span> <span class="org-comment">% Outputs:</span> <span class="org-comment">% - C [6x6 ss] - Compliance matrix</span> <span class="org-comment">% - C_norm [length(freqs)x1] - Frobenius norm of the Compliance matrix</span> <span class="org-comment">% - freqs [length(freqs)x1] - Frequency vector in [Hz]</span> </pre> </div> </div> </div> <div id="outline-container-orgda14a2f" class="outline-4"> <h4 id="orgda14a2f">Optional Parameters</h4> <div class="outline-text-4" id="text-orgda14a2f"> <div class="org-src-container"> <pre class="src src-matlab">arguments args.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span> args.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000) <span class="org-keyword">end</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab">freqs = args.freqs; </pre> </div> </div> </div> <div id="outline-container-orgef06b63" class="outline-4"> <h4 id="orgef06b63">Identification of the Compliance Matrix</h4> <div class="outline-text-4" id="text-orgef06b63"> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> options = linearizeOptions; options.SampleTime = 0; <span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> mdl = <span class="org-string">'stewart_platform_model'</span>; <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> clear io; io_i = 1; io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/F_ext'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% External forces [N, N*m]</span> io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> C = linearize(mdl, io, options); C.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>}; C.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>}; </pre> </div> <p> If wanted, the 6x6 transmissibility matrix is plotted. </p> <div class="org-src-container"> <pre class="src src-matlab">p_handle = zeros(6<span class="org-type">*</span>6,1); <span class="org-keyword">if</span> args.plots fig = <span class="org-type">figure</span>; <span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span> <span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span> p_handle((ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy) = subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy); hold on; plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); <span class="org-keyword">if</span> ix <span class="org-type"><</span> 6 xticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">if</span> iy <span class="org-type">></span> 1 yticklabels({}); <span class="org-keyword">end</span> <span class="org-keyword">end</span> <span class="org-keyword">end</span> linkaxes(p_handle, <span class="org-string">'xy'</span>) xlim([freqs(1), freqs(end)]); han = <span class="org-type">axes</span>(fig, <span class="org-string">'visible'</span>, <span class="org-string">'off'</span>); han.XLabel.Visible = <span class="org-string">'on'</span>; han.YLabel.Visible = <span class="org-string">'on'</span>; xlabel(han, <span class="org-string">'Frequency [Hz]'</span>); ylabel(han, <span class="org-string">'Compliance [m/N, rad/(N*m)]'</span>); <span class="org-keyword">end</span> </pre> </div> </div> </div> <div id="outline-container-orgc21ec39" class="outline-4"> <h4 id="orgc21ec39">Computation of the Frobenius norm</h4> <div class="outline-text-4" id="text-orgc21ec39"> <div class="org-src-container"> <pre class="src src-matlab">freqs = args.freqs; C_norm = zeros(length(freqs), 1); <span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span> C_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>)); <span class="org-keyword">end</span> </pre> </div> <div class="org-src-container"> <pre class="src src-matlab"><span class="org-keyword">if</span> args.plots <span class="org-type">figure</span>; plot(freqs, C_norm) <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>); xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'Compliance - Frobenius Norm'</span>); <span class="org-keyword">end</span> </pre> </div> </div> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2020-03-02 lun. 17:57</p> </div> </body> </html>