diff --git a/docs/active-damping.html b/docs/active-damping.html index e88d9a2..06f97dd 100644 --- a/docs/active-damping.html +++ b/docs/active-damping.html @@ -4,7 +4,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +ground = initializeGround('type', 'none'); +payload = initializePayload('type', 'none'); ++
%% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File -mdl = 'stewart_active_damping'; +mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; -io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] -io(io_i) = linio([mdl, '/Vm'], 1, 'openoutput'); io_i = io_i + 1; % Absolute velocity of each leg [m/s] +io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] +io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Vm'); io_i = io_i + 1; % Absolute velocity of each leg [m/s] %% Run the linearization G = linearize(mdl, io, options); @@ -363,8 +369,8 @@ The transfer function from actuator forces to force sensors is shown in Figure <
We add some stiffness and damping in the flexible joints and we re-identify the dynamics. @@ -400,8 +406,8 @@ The new dynamics from force actuator to force sensor is shown in Figure
The control is a performed in a decentralized manner. @@ -426,8 +432,8 @@ The root locus is shown in figure 3.
@@ -447,8 +453,8 @@ We do not have guaranteed stability with Inertial control. This is because of th
We first initialize the Stewart platform without joint stiffness. @@ -468,6 +474,12 @@ stewart = initializeInertialSensor(stewart, 'type'
ground = initializeGround('type', 'none'); +payload = initializePayload('type', 'none'); ++
And we identify the dynamics from force actuators to force sensors.
@@ -477,12 +489,12 @@ options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File -mdl = 'stewart_active_damping'; +mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; -io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] -io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensor Outputs [N] +io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] +io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensor Outputs [N] %% Run the linearization G = linearize(mdl, io, options); @@ -503,8 +515,8 @@ The transfer function from actuator forces to force sensors is shown in Figure <We add some stiffness and damping in the flexible joints and we re-identify the dynamics. @@ -540,8 +552,8 @@ The new dynamics from force actuator to force sensor is shown in Figure
The control is a performed in a decentralized manner. @@ -573,8 +585,8 @@ The root locus is shown in figure 6 and the obtained p
@@ -595,8 +607,8 @@ Thus, if Integral Force Feedback is to be used in a Stewart platform with flexib
We first initialize the Stewart platform without joint stiffness. @@ -616,6 +628,12 @@ stewart = initializeInertialSensor(stewart, 'type'
ground = initializeGround('type', 'none'); +payload = initializePayload('type', 'none'); ++
And we identify the dynamics from force actuators to force sensors.
@@ -625,12 +643,12 @@ options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File -mdl = 'stewart_active_damping'; +mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; -io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] -io(io_i) = linio([mdl, '/Dm'], 1, 'openoutput'); io_i = io_i + 1; % Relative Displacement Outputs [N] +io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] +io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m] %% Run the linearization G = linearize(mdl, io, options); @@ -652,8 +670,8 @@ The transfer function from actuator forces to relative motion sensors is shown iWe add some stiffness and damping in the flexible joints and we re-identify the dynamics. @@ -689,8 +707,8 @@ The new dynamics from force actuator to relative motion sensor is shown in Figur
The control is a performed in a decentralized manner. @@ -715,8 +733,8 @@ The root locus is shown in figure 10.
@@ -730,7 +748,7 @@ Joint stiffness does increase the resonance frequencies of the system but does n
Created: 2020-02-11 mar. 18:04
+Created: 2020-02-13 jeu. 14:50