diff --git a/docs/bibliography.html b/docs/bibliography.html index abe4a64..364a213 100644 --- a/docs/bibliography.html +++ b/docs/bibliography.html @@ -4,7 +4,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> - + Stewart Platform - Bibliography @@ -465,6 +465,10 @@ + + + + @@ -482,7 +486,9 @@ Link to bibliography +Read Built +Application Configuration Joints Actuators @@ -494,451 +500,78 @@ -brezina08_ni_labview_matlab_simmec_stewar_platf_desig -  +cleary91_protot_paral_manip +1 +X   -  -DC -  -  -Multi-Body - Sim mechanics -Modeling with sim-mechanics - - - -brezina10_contr_desig_stewar_platf_linear_actuat -  6-UPS -  -DC -  -  -  -State Space control with torque observer - - - -du14_piezo_actuat_high_precis_flexib -X -6-SPS (Optimized) -Flexible -PZT Piezo -Strain Gauge -Pointing -  -Workspace, Stiffness analyzed - - - -selig01_theor_stewar -  -  -  -Spring-Dashpot Model -  -Vibration -Equations of motion, K, C -Eigen-solutions of EoM - - - -hauge04_sensor_contr_space_based_six -X -Cubic -Flexible -Voice Coil -Force and Inertial -Vibration, LQG, Decentralized, Sensor Fusion -Single axis -Combine force/inertial sensors - - - -owoc19_mechat_desig_model_contr_stewar_gough_platf -  -  -  -Rotary -  -PID -  -Low cost Stewart-Platform - - - -houska10_desig_implem_absol_linear_posit -X -  Conventional DC -Absolute Linear position +Leg length     -Design and Implementation of linear position sensor for a ball screw actuator +Singular configuration analysis, workspace -brezina10_contr_desig_stewar_platf_linear_actuat -  -6-UPS -  -DC Ball Screw -  -Two layers: torque control + DC synchronization -Sim mechanics -Controller design using a torque observer - - - -zhang11_six_dof +geng93_six_degree_of_freed_activ, geng94_six_degree_of_freed_activ +1 X -Non-cubic +Vibration Isolation +Cubic (6-UPU) Flexible Magnetostrictive -Inertial -Vibration, adaptive filters -  -Design and Control of flexure joint Hexapods +Force, Accelerometers +Robust Adaptative Filter +Linear Model +Hardware implementation -min19_high_precis_track_cubic_stewar +geng95_intel_contr_system_multip_degree   -Cubic -  -Piezoelectric -Leg length -Tracking control, ADRC, State observer -Analytical -Use of ADRC for tracking control of cubic hexapod - - - -wang16_inves_activ_vibrat_isolat_stewar X +Vibration Isolation Cubic Flexible -Piezoelectric -Force Sensor + Accelerometer -Vibration isolation, HAC-LAC (IFF + FxLMS) -Flexible Elements (FRF) -Dynamic Model + Vibration Control - - - -yang19_dynam_model_decoup_contr_flexib -X -6-UPS (Cubic?) -Flexible -Piezoelectric -Force, Position -Vibration isolation, Model-Based, Modal control -Solid/Flexible -Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space - - - -cheng04_multi_body_system_model_gough, gexue04_vibrat_contr_with_stewar_paral_mechan -  -6-TPS -  -  -Inertial -Vibration, Decentralized PD -Multi-Body -Control architectures for vibration control of Stewart platform on top of a flexible support - - - -pedrammehr12_study_vibrat_stewar_platf_based -X -6-UPS -  -  -  -  -Analytical, FEM -Variations of K with the pose - - - -bonev01_new_approac_to_orien_works -  -  -  -  -  -  -  -Computes orientation workspace - - - -lara-molina15_combin_struc_contr_optim_desig -  -  -  -  -  -  -  -Optimal Design, Sensitivity Analysis - - - -yang10_model_dof_simul_simmec -  -  -  -  -  -Decentralized PID -  -Simulation with Simulink/SimMechanics - - - -baig14_neural_networ_optim_desig_param -X -  -  -  -  -Vibration isolation -Matlab/Simulink -Parameter optimization based on Transmissibility - - - -gao02_new_kinem_struc_paral_manip_desig -  -  -  -  -  -  -  -New structure for Parallel Manipulator Designs - - - -molina08_simul_stewar -  -  -  -  -  -  -  -Simulation with Matlab/Simulink - - - -jiao18_dynam_model_exper_analy_stewar -X -  -Flexible -Voice Coil -Accelerometers -MIMO H-Infinity, active damping -Analytical -Model + active damping with flexible hinges - - - -tang18_decen_vibrat_contr_voice_coil -X -Cubic -  -Voice Coil -Accelerometer in each leg -Decentralized vibration control -  -Vibration Control with VCM and Decentralized control - - - -taghavi19_desig_model_simul_novel_hexap -  -6-SCS -Conventional -- -- -Passive Damping -Matlab/Simscape -6dof passive damper - - - -abbas14_vibrat_stewar_platf -  -Non-cubic -  -Voice Coil -Accelerometer in each leg -Centralized Vibration Control, PI, Skyhook -  -  - - - -yun11_gener_dynam_contr_model_class -  -  -  -  -  -  -  -  - - - -xu13_track_posit_vibrat_contr_simul -  -  -  -  -  -  -  -  - - - -wang03_kinem_dynam_degree_of_freed -  -  -Flexible -  -  -  -  -  - - - -ting13_compos_contr_desig_stewar_nanos_platf, ting06_desig_stewar_nanos_platf -X -  -  -  -  -  -  -  - - - -thier16_six_degree_freed_vibrat_isolat -  -  -  -  -  -  -  -  - - - -thayer98_stewar, thayer02_six_axis_vibrat_isolat_system -X -  -  -  -  -  -  -  - - - -su04_distur_rejec_high_precis_motion -X -  -  -  -  -  -  -  +Magnetostrictive +Force, Accelerometers +Two layers: Decentralized Force Feedback, Robust Adaptative Control +Linear Model +Two layer control for active damping and vibration isolation spanos95_soft_activ_vibrat_isolat +  +X +Vibration Isolation (Space) +Cubic +Flexible +Voice Coil +Force +Decentralized Force Feedback +  +Decentralized force feedback to reduce the transmissibility + + + +thayer98_stewar, thayer02_six_axis_vibrat_isolat_system +  X   +Cubic   -  -  -  -  -  - - - -ranganath04_force_torque_sensor_based_stewar -  -  -  -  -  -  -  -  - - - -pu11_six_degree_of_freed_activ -  -  -  -  -  -  -  -  - - - -preumont07_six_axis_singl_stage_activ -  -  -  -  -  -  -  -  - - - -pernechele98_hexap_contr_activ_secon_mirror -  -  -  -  -  -  -  +Voice Coil +Force, LVDT, Geophones +LQG +FEM => State Space   obrien98_lesson   -  -  -  -  -  -  -  - - - -neagoe10_accur_stewar_platf       @@ -947,11 +580,14 @@       +  mcinroy99_precis_fault_toler_point_using_stewar_platf   +  +        @@ -964,17 +600,6 @@ mcinroy99_dynam   -  -  -  -  -  -  -  - - - -mcinroy02_model_desig_flexur_joint_stewar       @@ -983,22 +608,12 @@       +  mcinroy00_desig_contr_flexur_joint_hexap   -  -  -  -  -  -  -  - - - -masory93_accur_stewar_platf       @@ -1007,70 +622,12 @@       - - - -lin03_adapt_sinus_distur_cancel_precis -  -  -  -  -  -  -  -  - - - -li01_simul_vibrat_isolat_point_contr -  -  -  -  -  -  -  -  - - - -lei08_multi_objec_robus_activ_vibrat -  -  -Flexible -Piezoelectric -  -H-Infinity and mu-synthesis -  -  - - - -lee03_posit_contr_stewar_platf_using -  -  -  -  -  -  -    kim00_robus_track_contr_desig_dof_paral_manip   -  -  -  -  -  -  -  - - - -huang05_smoot_stewar       @@ -1079,143 +636,13 @@       - - - -horin06_singul_condit_six_degree_of -  -  -  -  -  -  -  -  - - - -heertjes10_optim_dynam_decoup_activ_vibrat_isolat -  -  -  -  -  -  -  -  - - - -geng95_intel_contr_system_multip_degree -  -  -  -  -  -  -  -  - - - -geng94_six_degree_of_freed_activ -  -  -  -  -  -  -  -  - - - -geng93_six_degree_of_freed_activ -  -  -  -  -  -  -  -  - - - -furutani04_nanom_cuttin_machin_using_stewar -  -  -  -  -  -  -  -  - - - -dong08_stiff_resear_high_precis_large, dong07_desig_precis_compl_paral_posit -  -  -  -  -  -  -  -  - - - -ding11_robus_vibrat_isolat_dof -  -  -  -  -  -  -  -  - - - -cleary91_protot_paral_manip -  -  -  -  -  -  -  -  - - - -chen04_decoup_contr_flexur_joint_hexap -  -  -  -  -  -  -  -  - - - -chen03_payload_point_activ_vibrat_isolat -  -  -  -  -  -  -    chen00_ident   +        @@ -1223,11 +650,70 @@       +  + + + +li01_simul_vibrat_isolat_point_contr +  +  +  +  +  +  +  +  +  +  + + + +selig01_theor_stewar +  +  +  +  +  +Spring-Dashpot Model +  +Vibration +Equations of motion, K, C +Eigen-solutions of EoM + + + +bonev01_new_approac_to_orien_works +  +  +  +  +  +  +  +  +  +Computes orientation workspace + + + +gao02_new_kinem_struc_paral_manip_desig +  +  +  +  +  +  +  +  +  +New structure for Parallel Manipulator Designs chai02_pract_calib_proces_using_partial   +  +        @@ -1238,8 +724,10 @@ -beno10 +mcinroy02_model_desig_flexur_joint_stewar   +  +        @@ -1250,7 +738,8 @@ -beijen18_self_tunin_mimo_distur_feedf +abu02_stiff_soft_stewar_platf_activ +        @@ -1259,23 +748,14 @@       - - - -yang17_dynam_isotr_desig_decen_activ -  -  -  -  -  -  -    jafari03_orthog_gough_stewar_platf_microm   +  +        @@ -1286,22 +766,40 @@ -torii12_small_size_self_propel_stewar_platf -X +chen03_payload_point_activ_vibrat_isolat +  +  +  +  +  +  +  +  +  +  + + + +lee03_posit_contr_stewar_platf_using +  +  +  +  +  +  +  +  +  +  + + + +wang03_kinem_dynam_degree_of_freed +  +  +    Flexible -Inchworm -  -  -  -  - - - -abu02_stiff_soft_stewar_platf_activ -  -  -        @@ -1310,7 +808,8 @@ -ting07_measur_calib_stewar_microm_system +lin03_adapt_sinus_distur_cancel_precis +        @@ -1319,35 +818,644 @@       - - - -tong20_dynam_decoup_analy_exper_based -  -  -  -  -  -  -  -  - - - -stabile19_desig_analy_novel_hexap_platf -  -  -  -  -  -  -    agrawal04_algor_activ_vibrat_isolat_spacec   +  +  +  +  +  +  +  +  +  + + + +cheng04_multi_body_system_model_gough, gexue04_vibrat_contr_with_stewar_paral_mechan +  +  +Vibration Isolation +6-TPS +  +  +Inertial +Decentralized PD +Multi-Body +Control architectures for vibration control of Stewart platform on top of a flexible support + + + +hauge04_sensor_contr_space_based_six +  +X +Vibration Isolation +Cubic +Flexible +Voice Coil +Force and Inertial +LQG, Decentralized, Sensor Fusion +Single axis +Combine force/inertial sensors + + + +furutani04_nanom_cuttin_machin_using_stewar +  +  +  +  +  +  +  +  +  +  + + + +ranganath04_force_torque_sensor_based_stewar +  +  +  +  +  +  +  +  +  +  + + + +chen04_decoup_contr_flexur_joint_hexap +  +  +  +  +  +  +  +  +  +  + + + +su04_distur_rejec_high_precis_motion +  +X +  +  +  +  +  +  +  +  + + + +huang05_smoot_stewar +  +  +  +  +  +  +  +  +  +  + + + +ting06_desig_stewar_nanos_platf, ting13_compos_contr_desig_stewar_nanos_platf +  +X +  +  +  +  +  +  +  +  + + + +horin06_singul_condit_six_degree_of +  +  +  +  +  +  +  +  +  +  + + + +preumont07_six_axis_singl_stage_activ +  +  +  +  +  +  +  +  +  +  + + + +ting07_measur_calib_stewar_microm_system +  +  +  +  +  +  +  +  +  +  + + + +lei08_multi_objec_robus_activ_vibrat +  +  +  +  +Flexible +Piezoelectric +  +H-Infinity and mu-synthesis +  +  + + + +brezina08_ni_labview_matlab_simmec_stewar_platf_desig +  +  +  +  +  +DC +  +  +Multi-Body - Sim mechanics +Modeling with sim-mechanics + + + +molina08_simul_stewar +  +  +  +  +  +  +  +  +  +Simulation with Matlab/Simulink + + + +dong08_stiff_resear_high_precis_large, dong07_desig_precis_compl_paral_posit +  +  +  +  +  +  +  +  +  +  + + + +heertjes10_optim_dynam_decoup_activ_vibrat_isolat +  +  +  +  +  +  +  +  +  +  + + + +neagoe10_accur_stewar_platf +  +  +  +  +  +  +  +  +  +  + + + +beno10 +  +  +  +  +  +  +  +  +  +  + + + +yang10_model_dof_simul_simmec +  +  +  +  +  +  +  +Decentralized PID +  +Simulation with Simulink/SimMechanics + + + +brezina10_contr_desig_stewar_platf_linear_actuat +  +  +  +6-UPS +  +DC +  +  +  +State Space control with torque observer + + + +houska10_desig_implem_absol_linear_posit +  +X +  +  +Conventional +DC +Absolute Linear position +  +  +Design and Implementation of linear position sensor for a ball screw actuator + + + +brezina10_contr_desig_stewar_platf_linear_actuat +  +  +  +6-UPS +  +DC Ball Screw +  +Two layers: torque control + DC synchronization +Sim mechanics +Controller design using a torque observer + + + +zhang11_six_dof +  +X +  +Non-cubic +Flexible +Magnetostrictive +Inertial +Vibration, adaptive filters +  +Design and Control of flexure joint Hexapods + + + +yun11_gener_dynam_contr_model_class +  +  +  +  +  +  +  +  +  +  + + + +pu11_six_degree_of_freed_activ +  +  +  +  +  +  +  +  +  +  + + + +ding11_robus_vibrat_isolat_dof +  +  +  +  +  +  +  +  +  +  + + + +torii12_small_size_self_propel_stewar_platf +  +X +  +  +Flexible +Inchworm +  +  +  +  + + + +pedrammehr12_study_vibrat_stewar_platf_based +  +X +  +6-UPS +  +  +  +  +Analytical, FEM +Variations of K with the pose + + + +xu13_track_posit_vibrat_contr_simul +  +  +  +  +  +  +  +  +  +  + + + +baig14_neural_networ_optim_desig_param +  +X +  +  +  +  +  +Vibration isolation +Matlab/Simulink +Parameter optimization based on Transmissibility + + + +du14_piezo_actuat_high_precis_flexib +  +X +  +6-SPS (Optimized) +Flexible +PZT Piezo +Strain Gauge +Pointing +  +Workspace, Stiffness analyzed + + + +abbas14_vibrat_stewar_platf +  +  +  +Non-cubic +  +Voice Coil +Accelerometer in each leg +Centralized Vibration Control, PI, Skyhook +  +  + + + +lara-molina15_combin_struc_contr_optim_desig +  +  +  +  +  +  +  +  +  +Optimal Design, Sensitivity Analysis + + + +thier16_six_degree_freed_vibrat_isolat +  +  +  +  +  +  +  +  +  +  + + + +wang16_inves_activ_vibrat_isolat_stewar +  +X +  +Cubic +Flexible +Piezoelectric +Force Sensor + Accelerometer +Vibration isolation, HAC-LAC (IFF + FxLMS) +Flexible Elements (FRF) +Dynamic Model + Vibration Control + + + +yang17_dynam_isotr_desig_decen_activ +  +  +  +  +  +  +  +  +  +  + + + +beijen18_self_tunin_mimo_distur_feedf +  +  +  +  +  +  +  +  +  +  + + + +jiao18_dynam_model_exper_analy_stewar +  +X +  +  +Flexible +Voice Coil +Accelerometers +MIMO H-Infinity, active damping +Analytical +Model + active damping with flexible hinges + + + +tang18_decen_vibrat_contr_voice_coil +  +X +  +Cubic +  +Voice Coil +Accelerometer in each leg +Decentralized vibration control +  +Vibration Control with VCM and Decentralized control + + + +taghavi19_desig_model_simul_novel_hexap +  +  +  +6-SCS +Conventional +- +- +Passive Damping +Matlab/Simscape +6dof passive damper + + + +owoc19_mechat_desig_model_contr_stewar_gough_platf +  +  +  +  +  +Rotary +  +PID +  +Low cost Stewart-Platform + + + +min19_high_precis_track_cubic_stewar +  +  +  +Cubic +  +Piezoelectric +Leg length +Tracking control, ADRC, State observer +Analytical +Use of ADRC for tracking control of cubic hexapod + + + +yang19_dynam_model_decoup_contr_flexib +  +X +  +6-UPS (Cubic?) +Flexible +Piezoelectric +Force, Position +Vibration isolation, Model-Based, Modal control +Solid/Flexible +Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space + + + +stabile19_desig_analy_novel_hexap_platf +  +  +  +  +  +  +  +  +  +  + + + +tong20_dynam_decoup_analy_exper_based +  +  +        @@ -1439,7 +1547,61 @@
  • [jin09_kinem_desig_famil_partial_decoup_paral_manip] Yan Jin, I-Ming Chen & Guilin Yang, Kinematic Design of a Family of 6-dof Partially Decoupled Parallel Manipulators, Mechanism and Machine Theory, 44(5), 912-922 (2009). link. doi.
  • [legnani12_new_isotr_decoup_paral_manip] Legnani, Fassi, Giberti, Cinquemani & Tosi, A New Isotropic and Decoupled 6-dof Parallel Manipulator, Mechanism and Machine Theory, 58(nil), 64-81 (2012). link. doi.
  • [li18_optim_desig_six_axis_vibrat] Yao Li, XiaoLong Yang, HongTao Wu & Bai Chen, Optimal Design of a Six-Axis Vibration Isolator Via Stewart Platform By Using Homogeneous Jacobian Matrix Formulation Based on Dual Quaternions, Journal of Mechanical Science and Technology, 32(1), 11-19 (2018). link. doi.
  • +
  • [cleary91_protot_paral_manip] Cleary & Arai, A Prototype Parallel Manipulator: kinematics, construction, software, workspace results, and singularity analysis, nil, in in: Proceedings. 1991 IEEE International Conference on Robotics and Automation, edited by (1991)
  • +
  • [geng93_six_degree_of_freed_activ] Zheng Geng & Leonard Haynes, Six-Degree-Of-Freedom Active Vibration Isolation Using a Stewart Platform Mechanism, Journal of Robotic Systems, 10(5), 725-744 (1993). link. doi.
  • +
  • [geng94_six_degree_of_freed_activ] Geng & Haynes, Six Degree-Of-Freedom Active Vibration Control Using the Stewart Platforms, IEEE Transactions on Control Systems Technology, 2(1), 45-53 (1994). link. doi.
  • +
  • [geng95_intel_contr_system_multip_degree] Jason Geng, George Pan, Leonard Haynes, Ben Wada & John Garba, An Intelligent Control System for Multiple Degree-Of-Freedom Vibration Isolation, Journal of Intelligent Material Systems and Structures, 6(6), 787-800 (1995). link. doi.
  • +
  • [spanos95_soft_activ_vibrat_isolat] Spanos, Rahman & Blackwood, A Soft 6-axis Active Vibration Isolator, nil, in in: Proceedings of 1995 American Control Conference - ACC'95, edited by (1995)
  • +
  • [thayer98_stewar] Thayer & Vagners, A look at the pole/zero structure of a Stewart platform using special coordinate basis, nil, in in: Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), edited by (1998)
  • +
  • [thayer02_six_axis_vibrat_isolat_system] Doug Thayer, Mark Campbell, Juris Vagners & Andrew von Flotow, Six-Axis Vibration Isolation System Using Soft Actuators and Multiple Sensors, Journal of Spacecraft and Rockets, 39(2), 206-212 (2002). link. doi.
  • +
  • [obrien98_lesson] O'Brien, McInroy, Bodtke, Bruch & Hamann, Lessons learned in nonlinear systems and flexible robots through experiments on a 6 legged platform, nil, in in: Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), edited by (1998)
  • +
  • [mcinroy99_precis_fault_toler_point_using_stewar_platf] McInroy, O'Brien & Neat, Precise, Fault-Tolerant Pointing Using a Stewart Platform, IEEE/ASME Transactions on Mechatronics, 4(1), 91-95 (1999). link. doi.
  • +
  • [mcinroy99_dynam] McInroy, Dynamic modeling of flexure jointed hexapods for control purposes, nil, in in: Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328), edited by (1999)
  • +
  • [mcinroy00_desig_contr_flexur_joint_hexap] McInroy & Hamann, Design and Control of Flexure Jointed Hexapods, IEEE Transactions on Robotics and Automation, 16(4), 372-381 (2000). link. doi.
  • +
  • [kim00_robus_track_contr_desig_dof_paral_manip] Dong Hwan Kim, Ji-Yoon Kang & Kyo-Il Lee, Robust Tracking Control Design for a 6 Dof Parallel Manipulator, Journal of Robotic Systems, 17(10), 527-547 (2000). link. doi.
  • +
  • [chen00_ident] Yixin Chen & McInroy, Identification and decoupling control of flexure jointed hexapods, nil, in in: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), edited by (2000)
  • +
  • [li01_simul_vibrat_isolat_point_contr] Xiaochun Li, Jerry Hamann & John McInroy, Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods, nil, in in: Smart Structures and Materials 2001: Smart Structures and Integrated Systems, edited by (2001)
  • +
  • [selig01_theor_stewar] Selig & Ding, Theory of vibrations in Stewart platforms, 2190-2195, in in: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180), edited by (2001)
  • +
  • [bonev01_new_approac_to_orien_works] Ilian Bonev & Jeha Ryu, A New Approach To Orientation Workspace Analysis of 6-dof Parallel Manipulators, Mechanism and Machine Theory, 36(1), 15-28 (2001). link. doi.
  • +
  • [gao02_new_kinem_struc_paral_manip_desig] Feng Gao, Weimin Li, Xianchao Zhao, Zhenlin Jin & Hui Zhao, New Kinematic Structures for 2-, 3-, 4-, and 5-dof Parallel Manipulator Designs, Mechanism and Machine Theory, 37(11), 1395-1411 (2002). link. doi.
  • +
  • [chai02_pract_calib_proces_using_partial] Kok-Soon Chai, Ken Young & Ian Tuersley, A Practical Calibration Process Using Partial Information for a Commercial Stewart Platform, Robotica, 20(03), nil (2002). link. doi.
  • +
  • [mcinroy02_model_desig_flexur_joint_stewar] McInroy, Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes, IEEE/ASME Transactions on Mechatronics, 7(1), 95-99 (2002). link. doi.
  • +
  • [abu02_stiff_soft_stewar_platf_activ] Abu Hanieh, Horodinca & Preumont, Stiff and Soft Stewart Platforms for Active Damping and Active Isolation of Vibrations, in in: Actuator 2002, 8th International Conference on New Actuators, edited by (2002)
  • +
  • [jafari03_orthog_gough_stewar_platf_microm] Jafari & McInroy, Orthogonal Gough-Stewart Platforms for Micromanipulation, IEEE Transactions on Robotics and Automation, 19(4), 595-603 (2003). link. doi.
  • +
  • [chen03_payload_point_activ_vibrat_isolat] Hong-Jen Chen, Ronald Bishop & Brij Agrawal, Payload Pointing and Active Vibration Isolation Using Hexapod Platforms, nil, in in: 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, edited by (2003)
  • +
  • [lee03_posit_contr_stewar_platf_using] Se-Han Lee, Jae-Bok Song, Woo-Chun Choi & Daehie Hong, Position Control of a Stewart Platform Using Inverse Dynamics Control With Approximate Dynamics, Mechatronics, 13(6), 605-619 (2003). link. doi.
  • +
  • [wang03_kinem_dynam_degree_of_freed] Shao-Chi Wang, Hiromitsu Hikita, Hiroshi Kubo, Yong-Sheng Zhao, Zhen Huang & Tohru Ifukube, Kinematics and Dynamics of a 6 Degree-Of-Freedom Fully Parallel Manipulator With Elastic Joints, Mechanism and Machine Theory, 38(5), 439-461 (2003). link. doi.
  • +
  • [lin03_adapt_sinus_distur_cancel_precis] Haomin Lin & McInroy, Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms, IEEE Transactions on Control Systems Technology, 11(2), 267-272 (2003). link. doi.
  • +
  • [agrawal04_algor_activ_vibrat_isolat_spacec] Brij N Agrawal & Hong-Jen Chen, Algorithms for Active Vibration Isolation on Spacecraft Using a Stewart Platform, Smart Materials and Structures, 13(4), 873-880 (2004). link. doi.
  • +
  • [cheng04_multi_body_system_model_gough] Yuan Cheng, Gexue Ren & ShiLiang Dai, The Multi-Body System Modelling of the Gough-Stewart Platform for Vibration Control, Journal of Sound and Vibration, 271(3-5), 599-614 (2004). link. doi.
  • +
  • [gexue04_vibrat_contr_with_stewar_paral_mechan] Ren Gexue, Lu Qiuhai, Hu Ning, Nan Rendong & Peng Bo, On Vibration Control With Stewart Parallel Mechanism, Mechatronics, 14(1), 1-13 (2004). link. doi.
  • +
  • [hauge04_sensor_contr_space_based_six] Hauge & Campbell, Sensors and Control of a Space-Based Six-Axis Vibration Isolation System, Journal of Sound and Vibration, 269(3-5), 913-931 (2004). link. doi.
  • +
  • [furutani04_nanom_cuttin_machin_using_stewar] Katsushi Furutani, Michio Suzuki & Ryusei Kudoh, Nanometre-Cutting Machine Using a Stewart-Platform Parallel Mechanism, Measurement Science and Technology, 15(2), 467-474 (2004). link. doi.
  • +
  • [ranganath04_force_torque_sensor_based_stewar] R Ranganath, S Nair, S Mruthyunjaya & A Ghosal, A Force-Torque Sensor Based on a Stewart Platform in a Near-Singular Configuration, Mechanism and Machine Theory, 39(9), 971-998 (2004). link. doi.
  • +
  • [chen04_decoup_contr_flexur_joint_hexap] Chen & McInroy, Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix, IEEE Transactions on Control Systems Technology, 12(3), 413-421 (2004). link. doi.
  • +
  • [su04_distur_rejec_high_precis_motion] Su, Duan, Zheng, Zhang, Chen & Mi, Disturbance-Rejection High-Precision Motion Control of a Stewart Platform, IEEE Transactions on Control Systems Technology, 12(3), 364-374 (2004). link. doi.
  • +
  • [huang05_smoot_stewar] Chin I Huang & Li-Chen Fu, Smooth sliding mode tracking control of the Stewart platform, nil, in in: Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005., edited by (2005)
  • +
  • [ting06_desig_stewar_nanos_platf] Yung Ting, Jar & Chun-Chung Li, Design of a 6DOF Stewart-type Nanoscale Platform, nil, in in: 2006 Sixth IEEE Conference on Nanotechnology, edited by (2006)
  • +
  • [ting13_compos_contr_desig_stewar_nanos_platf] Yung Ting, Chun-Chung Li & Tho Van Nguyen, Composite Controller Design for a 6dof Stewart Nanoscale Platform, Precision Engineering, 37(3), 671-683 (2013). link. doi.
  • +
  • [horin06_singul_condit_six_degree_of] Ben Horin & Shoham, Singularity Condition of Six-Degree-Of-Freedom Three-Legged Parallel Robots Based on Grassmann-Cayley Algebra, IEEE Transactions on Robotics, 22(4), 577-590 (2006). link. doi.
  • +
  • [preumont07_six_axis_singl_stage_activ] Preumont, Horodinca, Romanescu, de Marneffe, Avraam, Deraemaeker, Bossens & Abu Hanieh, A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform, Journal of Sound and Vibration, 300(3-5), 644-661 (2007). link. doi.
  • +
  • [ting07_measur_calib_stewar_microm_system] Yung Ting, Ho-Chin Jar & Chun-Chung Li, Measurement and Calibration for Stewart Micromanipulation System, Precision Engineering, 31(3), 226-233 (2007). link. doi.
  • +
  • [lei08_multi_objec_robus_activ_vibrat] Liu Lei & Wang Benli, Multi Objective Robust Active Vibration Control for Flexure Jointed Struts of Stewart Platforms Via $H_\infty$ and $\mu$ Synthesis, Chinese Journal of Aeronautics, 21(2), 125-133 (2008). link. doi.
  • [brezina08_ni_labview_matlab_simmec_stewar_platf_desig] B\vrezina, Andr\vs & B\vrezina, Ni Labview-Matlab Simmechanics Stewart Platform Design, Applied and Computational Mechanics, (2008).
  • +
  • [molina08_simul_stewar] Molina, Rosario & Sanchez, Simulation environment proposal, analysis and control of a Stewart platform manipulator, in in: 7th Brazilian Conference on Dynamics, Control & Applications, edited by (2008)
  • +
  • [dong08_stiff_resear_high_precis_large] Wei Dong, Lining Sun & Zhijiang Du, Stiffness Research on a High-Precision, Large-Workspace Parallel Mechanism With Compliant Joints, Precision Engineering, 32(3), 222-231 (2008). link. doi.
  • +
  • [dong07_desig_precis_compl_paral_posit] Dong, Sun & Du, Design of a Precision Compliant Parallel Positioner Driven By Dual Piezoelectric Actuators, Sensors and Actuators A: Physical, 135(1), 250-256 (2007). link. doi.
  • +
  • [heertjes10_optim_dynam_decoup_activ_vibrat_isolat] Heertjes, van Engelen & Steinbuch, Optimized Dynamic Decoupling in Active Vibration Isolation, IFAC Proceedings Volumes, 43(18), 293-298 (2010).
  • +
  • [neagoe10_accur_stewar_platf] @incollectionneagoe10_accur_stewar_platf, + author = Neagoe, Mircea and Diaconescu, Dorin and Jaliu, Codruta and Stan, Sergiu-Dan and Cretescu, Nadia and Saulescu, Radu, + booktitle = Computational Intelligence and Modern Heuristics, + publisher = InTech, + title = On the Accuracy of a Stewart Platform: Modelling and Experimental Validation, + year = 2010, + tags = parallel robot, +
  • +
  • [beno10] Joseph Beno, John Booth & Jason Mock, An alternative architecture and control strategy for hexapod positioning systems to simplify structural design and improve accuracy, nil, in in: Ground-based and Airborne Telescopes III, edited by (2010)
  • +
  • [yang10_model_dof_simul_simmec] Chifu Yang, Zhengmao Ye, Ogbobe Peter & Junwei Han, Modeling and simulation of spatial 6-DOF parallel robots using Simulink and SimMechanics, nil, in in: 2010 3rd International Conference on Computer Science and Information Technology, edited by (2010)
  • [brezina10_contr_desig_stewar_platf_linear_actuat] @inbookbrezina10_contr_desig_stewar_platf_linear_actuat, author = T. B\vrezina and L. B\vrezina, booktitle = Recent Advances in Mechatronics, @@ -1453,10 +1615,6 @@ year = 2010, tags = parallel robot,
  • -
  • [du14_piezo_actuat_high_precis_flexib] Zhijiang Du, Ruochong Shi & Wei Dong, A Piezo-Actuated High-Precision Flexible Parallel Pointing Mechanism: Conceptual Design, Development, and Experiments, IEEE Transactions on Robotics, 30(1), 131-137 (2014). link. doi.
  • -
  • [selig01_theor_stewar] Selig & Ding, Theory of vibrations in Stewart platforms, 2190-2195, in in: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180), edited by (2001)
  • -
  • [hauge04_sensor_contr_space_based_six] Hauge & Campbell, Sensors and Control of a Space-Based Six-Axis Vibration Isolation System, Journal of Sound and Vibration, 269(3-5), 913-931 (2004). link. doi.
  • -
  • [owoc19_mechat_desig_model_contr_stewar_gough_platf] Dawid Owoc, Krzysztof Ludwiczak & Robert Piotrowski, Mechatronics Design, Modelling and Controlling of the Stewart-Gough Platform, nil, in in: 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR), edited by (2019)
  • [houska10_desig_implem_absol_linear_posit] @inbookhouska10_desig_implem_absol_linear_posit, author = P. Hou\vska and T. B\vrezina and L. B\vrezina, booktitle = Recent Advances in Mechatronics, @@ -1471,81 +1629,29 @@ tags = parallel robot,
  • [zhang11_six_dof] Zhen Zhang, J Liu, Jq Mao, Yx Guo & Yh Ma, Six DOF active vibration control using stewart platform with non-cubic configuration, nil, in in: 2011 6th IEEE Conference on Industrial Electronics and Applications, edited by (2011)
  • -
  • [min19_high_precis_track_cubic_stewar] Da Min, Deqing Huang & Hu Su, High-Precision Tracking of Cubic Stewart Platform Using Active Disturbance Rejection Control, nil, in in: 2019 Chinese Control Conference (CCC), edited by (2019)
  • -
  • [wang16_inves_activ_vibrat_isolat_stewar] Wang, Xie, Chen & Zhang, Investigation on Active Vibration Isolation of a Stewart Platform With Piezoelectric Actuators, Journal of Sound and Vibration, 383, 1-19 (2016). link. doi.
  • -
  • [yang19_dynam_model_decoup_contr_flexib] Yang, Wu, Chen, Kang & Cheng, Dynamic Modeling and Decoupled Control of a Flexible Stewart Platform for Vibration Isolation, Journal of Sound and Vibration, 439, 398-412 (2019). link. doi.
  • -
  • [cheng04_multi_body_system_model_gough] Yuan Cheng, Gexue Ren & ShiLiang Dai, The Multi-Body System Modelling of the Gough-Stewart Platform for Vibration Control, Journal of Sound and Vibration, 271(3-5), 599-614 (2004). link. doi.
  • -
  • [gexue04_vibrat_contr_with_stewar_paral_mechan] Ren Gexue, Lu Qiuhai, Hu Ning, Nan Rendong & Peng Bo, On Vibration Control With Stewart Parallel Mechanism, Mechatronics, 14(1), 1-13 (2004). link. doi.
  • +
  • [yun11_gener_dynam_contr_model_class] Yuan Yun & Yangmin Li, A General Dynamics and Control Model of a Class of Multi-Dof Manipulators for Active Vibration Control, Mechanism and Machine Theory, 46(10), 1549-1574 (2011). link. doi.
  • +
  • [pu11_six_degree_of_freed_activ] H Pu, X Chen, Z Zhou & X Luo, Six-Degree-Of-Freedom Active Vibration Isolation System With Decoupled Collocated Control, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(2), 313-325 (2011). link. doi.
  • +
  • [ding11_robus_vibrat_isolat_dof] Chenyang Ding, Damen & van den Bosch, Robust Vibration Isolation of a 6-DOF system using modal decomposition and sliding surface optimization, nil, in in: Proceedings of the 2011 American Control Conference, edited by (2011)
  • +
  • [torii12_small_size_self_propel_stewar_platf] Akihiro Torii, Masaaki Banno, Akiteru Ueda, Kae & Doki, A Small-Size Self-Propelled Stewart Platform, Electrical Engineering in Japan, 181(2), 37-46 (2012). link. doi.
  • [pedrammehr12_study_vibrat_stewar_platf_based] Siamak Pedrammehr, Mehran Mahboubkhah & Navid Khani, A Study on Vibration of Stewart Platform-Based Machine Tool Table, The International Journal of Advanced Manufacturing Technology, 65(5-8), 991-1007 (2012). link. doi.
  • -
  • [bonev01_new_approac_to_orien_works] Ilian Bonev & Jeha Ryu, A New Approach To Orientation Workspace Analysis of 6-dof Parallel Manipulators, Mechanism and Machine Theory, 36(1), 15-28 (2001). link. doi.
  • -
  • [lara-molina15_combin_struc_contr_optim_desig] Lara-Molina, Koroishi & Didier Dumur, Combined Structure-Control Optimal Design of the Stewart-Gough Robot, nil, in in: 2015 12th Latin American Robotics Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR), edited by (2015)
  • -
  • [yang10_model_dof_simul_simmec] Chifu Yang, Zhengmao Ye, Ogbobe Peter & Junwei Han, Modeling and simulation of spatial 6-DOF parallel robots using Simulink and SimMechanics, nil, in in: 2010 3rd International Conference on Computer Science and Information Technology, edited by (2010)
  • +
  • [xu13_track_posit_vibrat_contr_simul] Zhao-dong Xu & Chen-hui Weng, Track-Position and Vibration Control Simulation for Strut of the Stewart Platform, Journal of Zhejiang University SCIENCE A, 14(4), 281-291 (2013). link. doi.
  • [baig14_neural_networ_optim_desig_param] Baig & Pugazhenthi, Neural Network Optimization of Design Parameters of Stewart Platform for Effective Active Vibration Isolation, Journal of Engineering and Applied Sciences, 9(4), 78-84 (2014).
  • -
  • [gao02_new_kinem_struc_paral_manip_desig] Feng Gao, Weimin Li, Xianchao Zhao, Zhenlin Jin & Hui Zhao, New Kinematic Structures for 2-, 3-, 4-, and 5-dof Parallel Manipulator Designs, Mechanism and Machine Theory, 37(11), 1395-1411 (2002). link. doi.
  • -
  • [molina08_simul_stewar] Molina, Rosario & Sanchez, Simulation environment proposal, analysis and control of a Stewart platform manipulator, in in: 7th Brazilian Conference on Dynamics, Control & Applications, edited by (2008)
  • +
  • [du14_piezo_actuat_high_precis_flexib] Zhijiang Du, Ruochong Shi & Wei Dong, A Piezo-Actuated High-Precision Flexible Parallel Pointing Mechanism: Conceptual Design, Development, and Experiments, IEEE Transactions on Robotics, 30(1), 131-137 (2014). link. doi.
  • +
  • [abbas14_vibrat_stewar_platf] Hussain Abbas & Huang Hai, Vibration isolation concepts for non-cubic Stewart Platform using modal control, nil, in in: Proceedings of 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST) Islamabad, Pakistan, 14th - 18th January, 2014, edited by (2014)
  • +
  • [lara-molina15_combin_struc_contr_optim_desig] Lara-Molina, Koroishi & Didier Dumur, Combined Structure-Control Optimal Design of the Stewart-Gough Robot, nil, in in: 2015 12th Latin American Robotics Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR), edited by (2015)
  • +
  • [thier16_six_degree_freed_vibrat_isolat] Markus Thier, Rudolf Saathof, Andreas Sinn, Reinhard Hainisch & Georg Schitter, Six Degree of Freedom Vibration Isolation Platform for In-Line Nano-Metrology, IFAC-PapersOnLine, 49(21), 149-156 (2016). link. doi.
  • +
  • [wang16_inves_activ_vibrat_isolat_stewar] Wang, Xie, Chen & Zhang, Investigation on Active Vibration Isolation of a Stewart Platform With Piezoelectric Actuators, Journal of Sound and Vibration, 383, 1-19 (2016). link. doi.
  • +
  • [yang17_dynam_isotr_desig_decen_activ] XiaoLong Yang, HongTao Wu, Yao Li & Bai Chen, Dynamic Isotropic Design and Decentralized Active Control of a Six-Axis Vibration Isolator Via Stewart Platform, Mechanism and Machine Theory, 117(nil), 244-252 (2017). link. doi.
  • +
  • [beijen18_self_tunin_mimo_distur_feedf] Beijen, Heertjes, Van Dijk & Hakvoort, Self-Tuning Mimo Disturbance Feedforward Control for Active Hard-Mounted Vibration Isolators, Control Engineering Practice, 72(nil), 90-103 (2018). link. doi.
  • [jiao18_dynam_model_exper_analy_stewar] Jian Jiao, Ying Wu, Kaiping Yu & Rui Zhao, Dynamic Modeling and Experimental Analyses of Stewart Platform With Flexible Hinges, Journal of Vibration and Control, 25(1), 151-171 (2018). link. doi.
  • [tang18_decen_vibrat_contr_voice_coil] Jie Tang, Dengqing Cao & Tianhu Yu, Decentralized Vibration Control of a Voice Coil Motor-Based Stewart Parallel Mechanism: Simulation and Experiments, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(1), 132-145 (2018). link. doi.
  • [taghavi19_desig_model_simul_novel_hexap] Meysam Taghavi, Taku Kinoshita & Thomas Bock, Design, Modelling and Simulation of Novel Hexapod-Shaped Passive Damping System for Coupling Cable Robot and End Effector in Curtain Wall Module Installation Application, nil, in in: Proceedings of the 36th International Symposium on Automation and Robotics in Construction (ISARC), edited by (2019)
  • -
  • [abbas14_vibrat_stewar_platf] Hussain Abbas & Huang Hai, Vibration isolation concepts for non-cubic Stewart Platform using modal control, nil, in in: Proceedings of 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST) Islamabad, Pakistan, 14th - 18th January, 2014, edited by (2014)
  • -
  • [yun11_gener_dynam_contr_model_class] Yuan Yun & Yangmin Li, A General Dynamics and Control Model of a Class of Multi-Dof Manipulators for Active Vibration Control, Mechanism and Machine Theory, 46(10), 1549-1574 (2011). link. doi.
  • -
  • [xu13_track_posit_vibrat_contr_simul] Zhao-dong Xu & Chen-hui Weng, Track-Position and Vibration Control Simulation for Strut of the Stewart Platform, Journal of Zhejiang University SCIENCE A, 14(4), 281-291 (2013). link. doi.
  • -
  • [wang03_kinem_dynam_degree_of_freed] Shao-Chi Wang, Hiromitsu Hikita, Hiroshi Kubo, Yong-Sheng Zhao, Zhen Huang & Tohru Ifukube, Kinematics and Dynamics of a 6 Degree-Of-Freedom Fully Parallel Manipulator With Elastic Joints, Mechanism and Machine Theory, 38(5), 439-461 (2003). link. doi.
  • -
  • [ting13_compos_contr_desig_stewar_nanos_platf] Yung Ting, Chun-Chung Li & Tho Van Nguyen, Composite Controller Design for a 6dof Stewart Nanoscale Platform, Precision Engineering, 37(3), 671-683 (2013). link. doi.
  • -
  • [ting06_desig_stewar_nanos_platf] Yung Ting, Jar & Chun-Chung Li, Design of a 6DOF Stewart-type Nanoscale Platform, nil, in in: 2006 Sixth IEEE Conference on Nanotechnology, edited by (2006)
  • -
  • [thier16_six_degree_freed_vibrat_isolat] Markus Thier, Rudolf Saathof, Andreas Sinn, Reinhard Hainisch & Georg Schitter, Six Degree of Freedom Vibration Isolation Platform for In-Line Nano-Metrology, IFAC-PapersOnLine, 49(21), 149-156 (2016). link. doi.
  • -
  • [thayer98_stewar] Thayer & Vagners, A look at the pole/zero structure of a Stewart platform using special coordinate basis, nil, in in: Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), edited by (1998)
  • -
  • [thayer02_six_axis_vibrat_isolat_system] Doug Thayer, Mark Campbell, Juris Vagners & Andrew von Flotow, Six-Axis Vibration Isolation System Using Soft Actuators and Multiple Sensors, Journal of Spacecraft and Rockets, 39(2), 206-212 (2002). link. doi.
  • -
  • [su04_distur_rejec_high_precis_motion] Su, Duan, Zheng, Zhang, Chen & Mi, Disturbance-Rejection High-Precision Motion Control of a Stewart Platform, IEEE Transactions on Control Systems Technology, 12(3), 364-374 (2004). link. doi.
  • -
  • [spanos95_soft_activ_vibrat_isolat] Spanos, Rahman & Blackwood, A Soft 6-axis Active Vibration Isolator, nil, in in: Proceedings of 1995 American Control Conference - ACC'95, edited by (1995)
  • -
  • [ranganath04_force_torque_sensor_based_stewar] R Ranganath, S Nair, S Mruthyunjaya & A Ghosal, A Force-Torque Sensor Based on a Stewart Platform in a Near-Singular Configuration, Mechanism and Machine Theory, 39(9), 971-998 (2004). link. doi.
  • -
  • [pu11_six_degree_of_freed_activ] H Pu, X Chen, Z Zhou & X Luo, Six-Degree-Of-Freedom Active Vibration Isolation System With Decoupled Collocated Control, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(2), 313-325 (2011). link. doi.
  • -
  • [preumont07_six_axis_singl_stage_activ] Preumont, Horodinca, Romanescu, de Marneffe, Avraam, Deraemaeker, Bossens & Abu Hanieh, A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform, Journal of Sound and Vibration, 300(3-5), 644-661 (2007). link. doi.
  • -
  • [pernechele98_hexap_contr_activ_secon_mirror] Claudio Pernechele, Favio Bortoletto & Klaus Reif, Hexapod Control for an Active Secondary Mirror: General Concept and Test Results, Applied Optics, 37(28), 6816 (1998). link. doi.
  • -
  • [obrien98_lesson] O'Brien, McInroy, Bodtke, Bruch & Hamann, Lessons learned in nonlinear systems and flexible robots through experiments on a 6 legged platform, nil, in in: Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), edited by (1998)
  • -
  • [neagoe10_accur_stewar_platf] @incollectionneagoe10_accur_stewar_platf, - author = Neagoe, Mircea and Diaconescu, Dorin and Jaliu, Codruta and Stan, Sergiu-Dan and Cretescu, Nadia and Saulescu, Radu, - booktitle = Computational Intelligence and Modern Heuristics, - publisher = InTech, - title = On the Accuracy of a Stewart Platform: Modelling and Experimental Validation, - year = 2010, - tags = parallel robot, -
  • -
  • [mcinroy99_precis_fault_toler_point_using_stewar_platf] McInroy, O'Brien & Neat, Precise, Fault-Tolerant Pointing Using a Stewart Platform, IEEE/ASME Transactions on Mechatronics, 4(1), 91-95 (1999). link. doi.
  • -
  • [mcinroy99_dynam] McInroy, Dynamic modeling of flexure jointed hexapods for control purposes, nil, in in: Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328), edited by (1999)
  • -
  • [mcinroy02_model_desig_flexur_joint_stewar] McInroy, Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes, IEEE/ASME Transactions on Mechatronics, 7(1), 95-99 (2002). link. doi.
  • -
  • [mcinroy00_desig_contr_flexur_joint_hexap] McInroy & Hamann, Design and Control of Flexure Jointed Hexapods, IEEE Transactions on Robotics and Automation, 16(4), 372-381 (2000). link. doi.
  • -
  • [masory93_accur_stewar_platf] Masory, Wang & Zhuang, On the Accuracy of a Stewart Platform. II. Kinematic calibration and compensation, nil, in in: 1993 Proceedings IEEE International Conference on Robotics and Automation, edited by (1993)
  • -
  • [lin03_adapt_sinus_distur_cancel_precis] Haomin Lin & McInroy, Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms, IEEE Transactions on Control Systems Technology, 11(2), 267-272 (2003). link. doi.
  • -
  • [li01_simul_vibrat_isolat_point_contr] Xiaochun Li, Jerry Hamann & John McInroy, Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods, nil, in in: Smart Structures and Materials 2001: Smart Structures and Integrated Systems, edited by (2001)
  • -
  • [lei08_multi_objec_robus_activ_vibrat] Liu Lei & Wang Benli, Multi Objective Robust Active Vibration Control for Flexure Jointed Struts of Stewart Platforms Via $H_\infty$ and $\mu$ Synthesis, Chinese Journal of Aeronautics, 21(2), 125-133 (2008). link. doi.
  • -
  • [lee03_posit_contr_stewar_platf_using] Se-Han Lee, Jae-Bok Song, Woo-Chun Choi & Daehie Hong, Position Control of a Stewart Platform Using Inverse Dynamics Control With Approximate Dynamics, Mechatronics, 13(6), 605-619 (2003). link. doi.
  • -
  • [kim00_robus_track_contr_desig_dof_paral_manip] Dong Hwan Kim, Ji-Yoon Kang & Kyo-Il Lee, Robust Tracking Control Design for a 6 Dof Parallel Manipulator, Journal of Robotic Systems, 17(10), 527-547 (2000). link. doi.
  • -
  • [huang05_smoot_stewar] Chin I Huang & Li-Chen Fu, Smooth sliding mode tracking control of the Stewart platform, nil, in in: Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005., edited by (2005)
  • -
  • [horin06_singul_condit_six_degree_of] Ben Horin & Shoham, Singularity Condition of Six-Degree-Of-Freedom Three-Legged Parallel Robots Based on Grassmann-Cayley Algebra, IEEE Transactions on Robotics, 22(4), 577-590 (2006). link. doi.
  • -
  • [heertjes10_optim_dynam_decoup_activ_vibrat_isolat] Heertjes, van Engelen & Steinbuch, Optimized Dynamic Decoupling in Active Vibration Isolation, IFAC Proceedings Volumes, 43(18), 293-298 (2010).
  • -
  • [geng95_intel_contr_system_multip_degree] Jason Geng, George Pan, Leonard Haynes, Ben Wada & John Garba, An Intelligent Control System for Multiple Degree-Of-Freedom Vibration Isolation, Journal of Intelligent Material Systems and Structures, 6(6), 787-800 (1995). link. doi.
  • -
  • [geng94_six_degree_of_freed_activ] Geng & Haynes, Six Degree-Of-Freedom Active Vibration Control Using the Stewart Platforms, IEEE Transactions on Control Systems Technology, 2(1), 45-53 (1994). link. doi.
  • -
  • [geng93_six_degree_of_freed_activ] Zheng Geng & Leonard Haynes, Six-Degree-Of-Freedom Active Vibration Isolation Using a Stewart Platform Mechanism, Journal of Robotic Systems, 10(5), 725-744 (1993). link. doi.
  • -
  • [furutani04_nanom_cuttin_machin_using_stewar] Katsushi Furutani, Michio Suzuki & Ryusei Kudoh, Nanometre-Cutting Machine Using a Stewart-Platform Parallel Mechanism, Measurement Science and Technology, 15(2), 467-474 (2004). link. doi.
  • -
  • [dong08_stiff_resear_high_precis_large] Wei Dong, Lining Sun & Zhijiang Du, Stiffness Research on a High-Precision, Large-Workspace Parallel Mechanism With Compliant Joints, Precision Engineering, 32(3), 222-231 (2008). link. doi.
  • -
  • [dong07_desig_precis_compl_paral_posit] Dong, Sun & Du, Design of a Precision Compliant Parallel Positioner Driven By Dual Piezoelectric Actuators, Sensors and Actuators A: Physical, 135(1), 250-256 (2007). link. doi.
  • -
  • [ding11_robus_vibrat_isolat_dof] Chenyang Ding, Damen & van den Bosch, Robust Vibration Isolation of a 6-DOF system using modal decomposition and sliding surface optimization, nil, in in: Proceedings of the 2011 American Control Conference, edited by (2011)
  • -
  • [cleary91_protot_paral_manip] Cleary & Arai, A Prototype Parallel Manipulator: kinematics, construction, software, workspace results, and singularity analysis, nil, in in: Proceedings. 1991 IEEE International Conference on Robotics and Automation, edited by (1991)
  • -
  • [chen04_decoup_contr_flexur_joint_hexap] Chen & McInroy, Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix, IEEE Transactions on Control Systems Technology, 12(3), 413-421 (2004). link. doi.
  • -
  • [chen03_payload_point_activ_vibrat_isolat] Hong-Jen Chen, Ronald Bishop & Brij Agrawal, Payload Pointing and Active Vibration Isolation Using Hexapod Platforms, nil, in in: 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, edited by (2003)
  • -
  • [chen00_ident] Yixin Chen & McInroy, Identification and decoupling control of flexure jointed hexapods, nil, in in: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), edited by (2000)
  • -
  • [chai02_pract_calib_proces_using_partial] Kok-Soon Chai, Ken Young & Ian Tuersley, A Practical Calibration Process Using Partial Information for a Commercial Stewart Platform, Robotica, 20(03), nil (2002). link. doi.
  • -
  • [beno10] Joseph Beno, John Booth & Jason Mock, An alternative architecture and control strategy for hexapod positioning systems to simplify structural design and improve accuracy, nil, in in: Ground-based and Airborne Telescopes III, edited by (2010)
  • -
  • [beijen18_self_tunin_mimo_distur_feedf] Beijen, Heertjes, Van Dijk & Hakvoort, Self-Tuning Mimo Disturbance Feedforward Control for Active Hard-Mounted Vibration Isolators, Control Engineering Practice, 72(nil), 90-103 (2018). link. doi.
  • -
  • [yang17_dynam_isotr_desig_decen_activ] XiaoLong Yang, HongTao Wu, Yao Li & Bai Chen, Dynamic Isotropic Design and Decentralized Active Control of a Six-Axis Vibration Isolator Via Stewart Platform, Mechanism and Machine Theory, 117(nil), 244-252 (2017). link. doi.
  • -
  • [jafari03_orthog_gough_stewar_platf_microm] Jafari & McInroy, Orthogonal Gough-Stewart Platforms for Micromanipulation, IEEE Transactions on Robotics and Automation, 19(4), 595-603 (2003). link. doi.
  • -
  • [torii12_small_size_self_propel_stewar_platf] Akihiro Torii, Masaaki Banno, Akiteru Ueda, Kae & Doki, A Small-Size Self-Propelled Stewart Platform, Electrical Engineering in Japan, 181(2), 37-46 (2012). link. doi.
  • -
  • [abu02_stiff_soft_stewar_platf_activ] Abu Hanieh, Horodinca & Preumont, Stiff and Soft Stewart Platforms for Active Damping and Active Isolation of Vibrations, in in: Actuator 2002, 8th International Conference on New Actuators, edited by (2002)
  • -
  • [ting07_measur_calib_stewar_microm_system] Yung Ting, Ho-Chin Jar & Chun-Chung Li, Measurement and Calibration for Stewart Micromanipulation System, Precision Engineering, 31(3), 226-233 (2007). link. doi.
  • -
  • [tong20_dynam_decoup_analy_exper_based] Zhizhong Tong, Cl\'ement Gosselin & Hongzhou Jiang, Dynamic Decoupling Analysis and Experiment Based on a Class of Modified Gough-Stewart Parallel Manipulators With Line Orthogonality, Mechanism and Machine Theory, 143(nil), 103636 (2020). link. doi.
  • +
  • [owoc19_mechat_desig_model_contr_stewar_gough_platf] Dawid Owoc, Krzysztof Ludwiczak & Robert Piotrowski, Mechatronics Design, Modelling and Controlling of the Stewart-Gough Platform, nil, in in: 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR), edited by (2019)
  • +
  • [min19_high_precis_track_cubic_stewar] Da Min, Deqing Huang & Hu Su, High-Precision Tracking of Cubic Stewart Platform Using Active Disturbance Rejection Control, nil, in in: 2019 Chinese Control Conference (CCC), edited by (2019)
  • +
  • [yang19_dynam_model_decoup_contr_flexib] Yang, Wu, Chen, Kang & Cheng, Dynamic Modeling and Decoupled Control of a Flexible Stewart Platform for Vibration Isolation, Journal of Sound and Vibration, 439, 398-412 (2019). link. doi.
  • [stabile19_desig_analy_novel_hexap_platf] Stabile, Wegrzyn, Aglietti, Guglielmo S, Richardson & Smet, Design and Analysis of a Novel Hexapod Platform for High-Performance Micro-Vibration Mitigation, in in: Proc. 18. European Space Mechanisms and Tribology Symposium, edited by (2019)
  • -
  • [agrawal04_algor_activ_vibrat_isolat_spacec] Brij N Agrawal & Hong-Jen Chen, Algorithms for Active Vibration Isolation on Spacecraft Using a Stewart Platform, Smart Materials and Structures, 13(4), 873-880 (2004). link. doi.
  • +
  • [tong20_dynam_decoup_analy_exper_based] Zhizhong Tong, Cl\'ement Gosselin & Hongzhou Jiang, Dynamic Decoupling Analysis and Experiment Based on a Class of Modified Gough-Stewart Parallel Manipulators With Line Orthogonality, Mechanism and Machine Theory, 143(nil), 103636 (2020). link. doi.
  • [kim09_desig_model_novel_precis_micro_stage] Hwa Soo Kim & Young Man Cho, Design and Modeling of a Novel 3-dof Precision Micro-Stage, Mechatronics, 19(5), 598-608 (2009). link. doi.
  • [yun10_desig_analy_novel_redun_actuat] Yuan Yun & Yangmin Li, Design and Analysis of a Novel 6-dof Redundant Actuated Parallel Robot With Compliant Hinges for High Precision Positioning, Nonlinear Dynamics, 61(4), 829-845 (2010). link. doi.
  • @@ -1553,7 +1659,7 @@

    Author: Dehaeze Thomas

    -

    Created: 2020-03-03 mar. 16:03

    +

    Created: 2020-03-11 mer. 19:00

    diff --git a/docs/control-study.html b/docs/control-study.html index 82df9e9..747a52f 100644 --- a/docs/control-study.html +++ b/docs/control-study.html @@ -4,7 +4,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> - + Stewart Platform - Vibration Isolation @@ -249,28 +249,28 @@
  • 1. HAC-LAC (Cascade) Control - Integral Control