diff --git a/docs/bibliography.html b/docs/bibliography.html index e3df8d0..634c7f2 100644 --- a/docs/bibliography.html +++ b/docs/bibliography.html @@ -3,11 +3,11 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> - + Stewart Platform - Bibliography - + @@ -16,259 +16,119 @@ UP | HOME -
+

Stewart Platform - Bibliography

-
+

Table of Contents

- + +
+

1. Built Stewart PLatforms

+

-Things to add: + +

+

+Actuators:

-
-

1 Books

-
+

+Joints: +

+
    +
  • Flexible: usually for short stroke
  • +
  • Conventional
  • +
+ +

+Sensors: +

+
    +
  • Force Sensors
  • +
  • Relative Motion Sensors: Encoders, LVDT
  • +
  • Strain Gauge
  • +
  • Inertial Sensors (Geophone, Accelerometer)
  • +
  • External Metrology
  • +
+
+
+

1.1. Short Stroke

+
+

+ +

+ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Link to bibliographyRead
(Merlet 2006) 
(Taghirad 2013)X
(Preumont 2018) 
(Arakelian 2018) 
-
-
- -
-

2 Thesis

-
- - - --- -- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Link to bibliographyRead
(Li 2001)X
(Hanieh 2003)X
(Vivas 2004) 
(Deng 2017) 
-
-
- -
-

3 Articles - Reviews

-
- - - --- -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Link to bibliographyRead
(Dasgupta and Mruthyunjaya 2000)X
(Merlet 2002) 
(Patel and George 2012) 
(Buzurovic 2012) 
(Furqan, Suhaib, and Ahmad 2017)X
-
-
- -
-

4 Articles - Design Related

-
- - - --- -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Link to bibliographyMain Object
(Liu et al. 2001) 
(Tsai and Huang 2003) 
(Yang et al. 2004) 
(Anderson et al. 2006) 
(Pernkopf and Husty 2006)Reachable Workspace
(Mukherjee, Dasgupta, and Mallik 2007) 
(Jiang and Gosselin 2009a)Determination of the max. singularity free workspace
(Jiang and Gosselin 2009b)Orientation Workspace
(Jin, Chen, and Yang 2009) 
(Legnani et al. 2012) 
(Li et al. 2018) 
-
-
- -
-

5 Articles - Control Related

-
- - - --- -- -- -- @@ -285,98 +145,1785 @@ Things to add: - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Link to bibliographyReadBuiltApplicationUniversityFigure Configuration Joints Actuators SensorsApplicationLink to bibliography
JPLfig:stewart_jplCubicFlexibleVoice Coil (0.5 mm)Force (collocated) spanos95_soft_activ_vibrat_isolat, rahman98_multiax Vibration Isolation (Space)
Washinton, JPLfig:stewart_ht_uwCubicElastomersVoice Coil (10 mm)Force, LVDT, GeophonesIsolation + Pointing (Space)thayer98_stewar, thayer02_six_axis_vibrat_isolat_system, hauge04_sensor_contr_space_based_six
Wyomingfig:stewart_uw_gspCubic (CoM=CoK)FlexibleVoice CoilForce mcinroy99_dynam, mcinroy99_precis_fault_toler_point_using_stewar_platf, mcinroy00_desig_contr_flexur_joint_hexap, li01_simul_vibrat_isolat_point_contr, jafari03_orthog_gough_stewar_platf_microm
Brusselsfig:stewart_ulb_vcCubicFlexibleVoice CoilForceVibration Isolationhanieh03_activ_stewar, preumont07_six_axis_singl_stage_activ
SRDCfig:stewart_navalNot CubicBall jointsVoice Coil (10 mm)  taranti01_effic_algor_vibrat_suppr
SRDCfig:stewart_pphNon-CubicFlexibleVoice CoilAccelerometers, External metrology: Eddy Current + opticalPointingchen03_payload_point_activ_vibrat_isolat
Harbin (China)fig:stewart_tang18CubicFlexibleVoice CoilAccelerometer in each leg chi15_desig_exper_study_vcm_based, tang18_decen_vibrat_contr_voice_coil, jiao18_dynam_model_exper_analy_stewar
Einhovenfig:stewart_beijenAlmost cubicFlexibleVoice CoilForce Sensor + AccelerometerVibration Isolationbeijen18_self_tunin_mimo_distur_feedf, tjepkema12_activ_ph
JPLfig:stewart_gengCubic (6-UPU)FlexibleMagnetostrictiveForce (collocated), AccelerometersVibration Isolationgeng93_six_degree_of_freed_activ, geng94_six_degree_of_freed_activ, geng95_intel_contr_system_multip_degree
Chinafig:stewart_zhang11Non-cubicFlexibleMagnetostrictiveInertial zhang11_six_dof
Brusselsfig:stewart_ulb_pzCubicFlexiblePiezoelectric, AmplifiedPiezo ForceActive Dampingabu02_stiff_soft_stewar_platf_activ
SRDCfig:stewart_uqpCubic Piezoelectric (50 um)GeophoneVibrationagrawal04_algor_activ_vibrat_isolat_spacec
Taiwanfig:stewart_nanoscaleCubicFlexiblePiezoelectric (120 um)External capacitive ting06_desig_stewar_nanos_platf, ting13_compos_contr_desig_stewar_nanos_platf
Taiwanfig:stewart_ting07Non-CubicFlexiblePiezoelectric (160 um)External capacitive (LION) ting07_measur_calib_stewar_microm_system
Harbin (China)fig:stewart_du146-SPS (Optimized)FlexiblePiezoelectricStrain Gauge du14_piezo_actuat_high_precis_flexib
Japanfig:stewart_furutaniNon-CubicFlexiblePiezoelectric (16 um)Eddy Current Displacement SensorsCutting machinefurutani04_nanom_cuttin_machin_using_stewar
Chinafig:stewart_yang196-UPS (Cubic?)FlexiblePiezoelectricForce, Position yang19_dynam_model_decoup_contr_flexib
Shangaifig:stewart_wang16CubicFlexiblePiezoelectricForce Sensor + Accelerometer wang16_inves_activ_vibrat_isolat_stewar
Matra (France)fig:stewart_maisCubicFlexiblePiezoelectric (25 um)Piezo force sensorsVibration controldefendini00_techn
Japanfig:stewart_toriiNon-CubicFlexibleInchworm  torii12_small_size_self_propel_stewar_platf
Netherlandsfig:stewart_navesNon-CubicFlexible3-phase rotary motorRotary Encoders &naves20_desig;&naves20_t_flex
+ + + +
+

stewart_naves.jpg +

+

Figure 1: T-flex &naves20_desig

+
+ + + + + +
+

stewart_mais.jpg +

+

Figure 3: &defendini00_techn

+
+ + + + + + + + + + + + + + + + + + + + +
+

stewart_zhang11.jpg +

+

Figure 10: &zhang11_six_dof

+
+ + + + + + + + + + + + + + + + + +
+

stewart_ht_uw.jpg +

+

Figure 16: Hood Technology Corporation (HT) and the University of Washington (UW) have designed and tested a unique hexapod design for spaceborne interferometry missions &thayer02_six_axis_vibrat_isolat_system

+
+ + +
+

stewart_uw_gsp.jpg +

+

Figure 17: UW GSP: Mutually Orthogonal Stewart Geometry &li01_simul_fault_vibrat_isolat_point

+
+ + +
+

stewart_pph.jpg +

+

Figure 18: Precision Pointing Hexapod (PPH) &chen03_payload_point_activ_vibrat_isolat

+
+ + +
+

stewart_uqp.jpg +

+

Figure 19: Ultra Quiet Platform (UQP) &agrawal04_algor_activ_vibrat_isolat_spacec

+
+ + +
+

stewart_ulb_pz.jpg +

+

Figure 20: ULB - Piezoelectric &abu02_stiff_soft_stewar_platf_activ

+
+ + +
+

stewart_ulb_vc.jpg +

+

Figure 21: ULB - Voice Coil &hanieh03_activ_stewar

+
+
+
+ +
+

1.2. Long Stroke

+
+

+ +

+ + + + +++ ++ ++ ++ ++ ++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
UniversityFigureConfigurationJointsActuatorsSensorsLink to bibliography
Japanfig:stewart_cleary6-UPSConventionalDC, gear + rack pinionEncoder, 7um rescleary91_protot_paral_manip
Seoulfig:stewart_kim00Non-CubicConventionalHydraulicLVDTkim00_robus_track_contr_desig_dof_paral_manip
Xidian (China)fig:stewart_su04Non-CubicConventionalServo Motor + ScrewballEncodersu04_distur_rejec_high_precis_motion
Czechfig:stewart_czech6-UPSConventionalDC, Ball ScrewAbsolute Linear positionbrezina08_ni_labview_matlab_simmec_stewar_platf_desig, houska10_desig_implem_absol_linear_posit, brezina10_contr_desig_stewar_platf_linear_actuat
+ + + +
+

stewart_cleary.jpg +

+

Figure 22: &cleary91_protot_paral_manip

+
+ + +
+

stewart_kim00.jpg +

+

Figure 23: &kim01_six

+
+ + + + + +
+

stewart_czech.jpg +

+

Figure 25: Stewart platform from Brno University (Czech) &brezina08_ni_labview_matlab_simmec_stewar_platf_desig

+
+
+
+
+ +
+

2. Articles - Design Related

+
+

+ +

+ +
+
+

2.1. Flexures

+
+

+ +

+ +

+From &hauge04_sensor_contr_space_based_six: +

+
+

+Elastomer flexures, rather than steel, reduce lateral stiffness and improve passive performance at payload resonance (damping) and at frequencies greater than 100 Hz. +

+
+ + + + +++ ++ + + + + + + + + + + + + +
Main ObjectLink to bibliography
Effect of flexuresmcinroy02_model_desig_flexur_joint_stewar
+
+
+ +
+

2.2. Decoupling

+
+

+ +

+ + + + +++ ++ + + + + + + + + + + + + + + + + + +
Main ObjectLink to bibliography
Geometry for decoupling (CoM, CoK)mcinroy00_desig_contr_flexur_joint_hexap
 afzali-far16_vibrat_dynam_isotr_hexap_analy_studies
+
+
+ + + +
+

2.4. Workspace

+
+

+ +

+ + + + +++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Main ObjectLink to bibliography
Compute orientationbonev01_new_approac_to_orien_works
Reachable Workspacepernkopf06_works_analy_stewar_gough_type_paral_manip
Determination of the max. singularity free workspacejiang09_deter_maxim_singul_free_orien
Orientation Workspacejiang09_evaluat_repres_theor_orien_works
+
+
+ +
+

2.5. Modelling

+
+

+ +

+
+
+

2.5.1. Multi Body

+
+ +
+

2.5.2. Analytical

+
+ +
+

2.5.3. Lumped

+
+
+
+ +
+

3. Control

+
+

+ +

+

+Different control objectives: +

+ + +

+Sometimes, the two objectives are simultaneous, in that case multiple sensors needs to be combined in the control architecture (Section sec:control_multi_sensor). +

+ +

+Stewart platform, being 6DoF parallel mechanisms, have a coupled dynamics. +In order to ease the control design, decoupling is generally required. +Several approaches can be used (Section sec:control_decoupling). +

+
+
+

3.1. Vibration Control and Active Damping

+
+

+ +

+ +

+From &hauge04_sensor_contr_space_based_six: +

+
+

+In general, force sensors such as load cells, work well to measure vibration, but have difficulty with cross-axis dynamics. +Inertial sensors, on the other hand, do not have this cross-axis limitation, but are usually more sensitive to payload and base dynamics and are more difficult to control due to the non-collocated nature of the sensor and actuator. +Force sensors typically work well because they are not as sensitive to payload and base dynamics, but are limited in performance by a low-frequency zero pair resulting from the cross-axial stiffness. +This zero pair has confused many researchers because it is very sensitive, occasionally becoming non-minimum phase. +The zero pair is the current limitation in performance using load cell sensors. +

+
+
+ +
+

3.1.1. Integral Force Feedback

+
+ + + +++ ++ ++ ++ ++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
UniversityActuatorsSensorsControlMain ObjectLink to bibliography
JPLMagnetostrictiveForce (collocated), AccelerometersTwo layers: Decentralized IFF, Robust Adaptive ControlTwo layer control for active damping and vibration isolationgeng95_intel_contr_system_multip_degree
JPLVoice CoilForce (collocated)Decentralized IFFDecentralized force feedback to reduce the transmissibilityspanos95_soft_activ_vibrat_isolat, rahman98_multiax
WashintonVoice CoilForce, LVDT, GeophonesLQG, Force + geophones for vibration, LVDT for pointingCentralized control is no better than decentralized. Geophone + Force MISO control is goodthayer98_stewar, thayer02_six_axis_vibrat_isolat_system
WyomingVoice CoilForceCentralized (cartesian) IFFDifficult to decouple in practiceobrien98_lesson
WyomingVoice CoilForceIFF, centralized (decouple) + decentralized (coupled)Specific geometry: decoupled force plant. Better perf with centralized IFFmcinroy99_dynam, mcinroy99_precis_fault_toler_point_using_stewar_platf, mcinroy00_desig_contr_flexur_joint_hexap
BrusselsAPAPiezo force sensorDecentralized IFF abu02_stiff_soft_stewar_platf_activ
BrusselsVoice CoilForce SensorDecentralized IFFEffect of flexible jointspreumont07_six_axis_singl_stage_activ
ShangaiPiezoelectricForce Sensor + AccelerometerVibration isolation, HAC-LAC (IFF + FxLMS)Dynamic Model + Vibration Controlwang16_inves_activ_vibrat_isolat_stewar
China  Decentralized IFFDesign cubic configuration to have same modal frequencies: optimal damping of all modesyang17_dynam_isotr_desig_decen_activ
WashintonVoice CoilForceDecentralized IFFComparison of force sensor and inertial sensors. Issue on non-minimum phase zerohauge04_sensor_contr_space_based_six
ChinaPiezoelectricForce, PositionVibration isolation, Model-Based, Modal control: 6x PI controllersStiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal spaceyang19_dynam_model_decoup_contr_flexib
+
+
+ +
+

3.1.2. Sky-Hood Damping

+
+ + + +++ ++ ++ ++ ++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
UniversityActuatorsSensorsControlMain ObjectLink to bibliography
WyomingVoice CoilAccelerometer (collocated), ext. Rx/Ry sensorsCartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor)Decoupling, both vibration + pointing controlli01_simul_vibrat_isolat_point_contr
ChinaVoice CoilGeophone + Eddy Current (Struts, collocated)Decentralized (Sky Hook) + Centralized (modal) Control pu11_six_degree_of_freed_activ
ChinaVoice CoilAccelerometer in each legCentralized Vibration Control, PI, Skyhook abbas14_vibrat_stewar_platf
EinhovenVoice Coil6dof Accelerometers on mobile and fixed platformsSelf learning feedforward (FIR), Centralized MIMO feedback (sky hood damping) beijen18_self_tunin_mimo_distur_feedf
Harbin (China)Voice CoilAccelerometer in each legDecentralized vibration controlVibration Control with VCM and Decentralized controltang18_decen_vibrat_contr_voice_coil
WashintonVoice CoilGeophonesDecentralized Inertial FeedbackCentralized control is no better than decentralized. Geophone + Force MISO control is goodthayer02_six_axis_vibrat_isolat_system
WashintonVoice CoilGeophonesDecentralized Sky Hood DampingComparison of force sensor and inertial sensorshauge04_sensor_contr_space_based_six
Harbin (China)Voice CoilAccelerometersMIMO H-Infinity, active dampingModel + active damping with flexible hingesjiao18_dynam_model_exper_analy_stewar
+
+
+ +
+

3.1.3. Vibration Control of Narrowband Disturbances

+
+ + + +++ ++ ++ ++ ++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
UniversityActuatorsSensorsControlMain ObjectLink to bibliography
JPLMagnetostrictiveForce, AccelerometersRobust Adaptive FilterHardware implementationgeng93_six_degree_of_freed_activ, geng94_six_degree_of_freed_activ
SRDC  LMS with FIR (feedforward), disturbance rejection, Decentralized (struts) PIDRejection of narrowband periodic disturbanceschen03_payload_point_activ_vibrat_isolat
WyomingVoice Coil Adaptive sinusoidal disturbance (Phase Lock Loop) lin03_adapt_sinus_distur_cancel_precis
SRDCPiezoGeophone (collocated)“multiple error LMS” (require measured disturbance) vs “clear box” agrawal04_algor_activ_vibrat_isolat_spacec
ChinaMagnetostrictiveInertialSinusoidal vibration, adaptive filters (LMS)Design and Control of flexure joint Hexapodszhang11_six_dof
ShangaiPiezoelectricForce Sensor + AccelerometerVibration isolation, HAC-LAC (IFF + FxLMS)Dynamic Model + Vibration Controlwang16_inves_activ_vibrat_isolat_stewar
+
+
+
+ +
+

3.2. Position Control

+
+

+ +

+ +

+Here, the objective is to position the mobile platform with respect to an external metrology or internal metrology. +

+ +

+Control Strategy: +

+
    +
  • Decentralized P, PI or PID
  • +
  • LQR, LQG
  • +
  • H-Infinity
  • +
  • Two Layer
  • +
+ + + + +++ ++ ++ ++ ++ ++ ++ + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
UniversityActuatorsSensors Control Modelling Main ObjectLink to bibliography
(Cleary and Arai 1991)1XWashintonVoice CoilForce, LVDT, GeophonesLQG, Force + geophones for vibration, LVDT for pointingFEM => State SpaceCentralized control is no better than decentralized. Geophone + Force MISO control is goodthayer98_stewar, thayer02_six_axis_vibrat_isolat_system
WyomingVoice CoilForce, LVDTIFF, centralized (decouple) + decentralized (coupled)LumpedSpecific geometry: decoupled force plant. Better perf with centralized IFFmcinroy99_dynam, mcinroy99_precis_fault_toler_point_using_stewar_platf, mcinroy00_desig_contr_flexur_joint_hexap
SeoulHydraulicLVDTDecentralized (strut) vs Centralized (cartesian)  6-UPSConventionalDC kim00_robus_track_contr_desig_dof_paral_manip
WyomingVoice CoilAccelerometer (collocated), ext. Rx/Ry sensorsCartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor)Analytical equationsDecoupling, both vibration + pointing controlli01_simul_vibrat_isolat_point_contr
JapanAPAEddy current displacementDecentralized (struts) PI + LPF control  furutani04_nanom_cuttin_machin_using_stewar
ChinaVoice CoilGeophone + Eddy Current (Struts, collocated)Decentralized (Sky Hook) + Centralized (modal) Control  pu11_six_degree_of_freed_activ
Harbin (China)PZT PiezoStrain GaugeDecentralized position feedback Workspace, Stiffness analyzeddu14_piezo_actuat_high_precis_flexib
ChinaPiezoelectric Leg lengthTracking control, ADRC, State observerAnalyticalUse of ADRC for tracking control of cubic hexapodmin19_high_precis_track_cubic_stewar
ChinaPiezoelectricForce, PositionVibration isolation, Model-Based, Modal control: 6x PI controllersSolid/FlexibleStiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal spaceyang19_dynam_model_decoup_contr_flexib
+ +

+From: yang19_dynam_model_decoup_contr_flexib: +

+
+

+On the other hand, the traditional modal decoupled control strategy cannot deal with the flexible Stewart platform governed by Eq. (34) because it is impossible to achieve simultaneous diagonalization of the mass, damping and stiffness matrices. +To make the six-DOF system decoupled into six single-DOF isolators, we design a new controller based on the leg’s force and position feedback. +The idea is to synthesize the control force that can compensate the parasitic bending and torsional torques of the flexible joints and simultaneously achieve diagonalization of the matrices M, C and K. +

+
+
+
+ +
+

3.3. Multi Sensor Control

+
+

+ +

+ +

+Improvement by the use of several sensors: +

+
    +
  • HAC-LAC
  • +
  • Two sensor control
  • +
  • Sensor Fusion
  • +
+ +

+Comparison between “two sensor control” and “sensor fusion” is given in &beijen14_two_sensor_contr_activ_vibrat. +

+
+ +
+

3.3.1. Two sensor control

+
+ + + +++ ++ ++ ++ ++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + +
UniversityActuatorsSensorsControlMain ObjectLink to bibliography
WashintonVoice CoilForce and InertialLQG, Decentralized, Sensor FusionCombine force/inertial sensors. Comparison of force sensor and inertial sensors. Issue on non-minimum phase zerohauge04_sensor_contr_space_based_six
NetherlandsVoice Coil  Sensor Fusion, Two Sensor Control  tjepkema12_activ_ph
+
+
+ +
+

3.3.2. HAC-LAC

+
+ + + +++ ++ ++ ++ ++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
UniversityActuatorsSensorsControlMain ObjectLink to bibliography
JPLMagnetostrictiveForce (collocated), AccelerometersTwo layers: Decentralized IFF, Robust Adaptive ControlTwo layer control for active damping and vibration isolationgeng95_intel_contr_system_multip_degree
ShangaiPiezoelectricForce Sensor + AccelerometerVibration isolation, HAC-LAC (IFF + FxLMS)Dynamic Model + Vibration Controlwang16_inves_activ_vibrat_isolat_stewar
WyomingVoice CoilAccelerometer (collocated), ext. Rx/Ry sensorsCartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor)Decoupling, both vibration + pointing controlli01_simul_vibrat_isolat_point_contr
ChinaVoice CoilGeophone + Eddy Current (Struts, collocated)Decentralized (Sky Hook) + Centralized (modal) Control pu11_six_degree_of_freed_activ
ChinaVoice CoilForce sensors (strus) + accelerometer (cartesian)Decentralized Force Feedback + Centralized H2 control based on accelerometers xie17_model_contr_hybrid_passiv_activ
+
+
+ +
+

3.3.3. Sensor Fusion

+
+ + + +++ ++ ++ ++ ++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
UniversityActuatorsSensorsControlMain ObjectLink to bibliography
NetherlandsVoice CoilForce (HF) and Inertial (LF)Sensor Fusion, Two Sensor Control tjepkema12_activ_ph, tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip
WashintonVoice CoilForce (HF) and Inertial (LF)LQG, Decentralized, Sensor FusionCombine force/inertial sensors. Comparison of force sensor and inertial sensors. Issue on non-minimum phase zerohauge04_sensor_contr_space_based_six
+
+
+ +
+

3.3.4. Other Strategies

+
+ + + +++ ++ ++ ++ ++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
UniversityActuatorsSensorsControlMain ObjectLink to bibliography
ChinaPiezoelectricForce, PositionVibration isolation, Model-Based, Modal control: 6x PI controllersStiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal spaceyang19_dynam_model_decoup_contr_flexib
WashintonVoice CoilForce, LVDT, GeophonesLQG, Force + geophones for vibration, LVDT for pointingCentralized control is no better than decentralized. Geophone + Force MISO control is goodthayer98_stewar, thayer02_six_axis_vibrat_isolat_system
WyomingVoice CoilForceIFF, centralized (decouple) + decentralized (coupled)Specific geometry: decoupled force plant. Better perf with centralized IFFmcinroy99_dynam, mcinroy99_precis_fault_toler_point_using_stewar_platf, mcinroy00_desig_contr_flexur_joint_hexap
+
+
+
+ +
+

3.4. Decoupling Strategies

+
+

+Different strategies: +

+
    +
  • Jacobian decoupling: in the cartesian frame or in the frame of the struts
  • +
  • Modal decoupling
  • +
  • SVD decoupling
  • +
+ +

+Identify Jacobian for better decoupling: cheng04_multi_body_system_model_gough, gexue04_vibrat_contr_with_stewar_paral_mechan. +

+ +

+ +

+
+
+

3.4.1. Jacobian - Struts

+
+ + + +++ ++ ++ ++ ++ + + + + + + + + + + + + + + + + + +
JapanAPAEddy current displacementDecentralized (struts) PI + LPF controlfurutani04_nanom_cuttin_machin_using_stewar
Harbin (China)PZT PiezoStrain GaugeDecentralized position feedbackdu14_piezo_actuat_high_precis_flexib
+
+
+ +
+

3.4.2. Jacobian - Cartesian

+
+ + + +++ ++ ++ ++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
WyomingVoice CoilForceCartesian frame decouplingobrien98_lesson
WyomingVoice CoilForceIFF, Cartesian Frame, Jacobiansmcinroy99_dynam, mcinroy99_precis_fault_toler_point_using_stewar_platf, mcinroy00_desig_contr_flexur_joint_hexap
SeoulHydraulicLVDTDecentralized (strut) vs Centralized (cartesian)kim00_robus_track_contr_desig_dof_paral_manip
WyomingVoice CoilAccelerometer (collocated), ext. Rx/Ry sensorsCartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor)li01_simul_vibrat_isolat_point_contr
ChinaVoice CoilAccelerometer in each legCentralized Vibration Control, PI, Skyhookabbas14_vibrat_stewar_platf
+
+
+ +
+

3.4.3. Modal Decoupling

+
+ + + +++ ++ ++ ++ ++ + + + + + + + + + + + + + + + + + +
ChinaVoice CoilGeophone + Eddy Current (Struts, collocated)Decentralized (Sky Hook) + Centralized (modal) Controlpu11_six_degree_of_freed_activ
ChinaPiezoelectricForce, PositionVibration isolation, Model-Based, Modal control: 6x PI controllersyang19_dynam_model_decoup_contr_flexib
+
+
+ +
+

3.4.4. Multivariable Control

+
+

+From &thayer02_six_axis_vibrat_isolat_system: +

+
+

+Experimental closed-loopcontrol results using the hexapod have shown that controllers designed using a decentralized single-strut design work well when compared to full multivariable methodologies. +

+
+ + + + + +++ ++ ++ ++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + +
ChinaPZTGeophone (struts)H-Infinity and mu-synthesislei08_multi_objec_robus_activ_vibrat
ChinaVoice CoilForce sensors (strus) + accelerometer (cartesian)Decentralized Force Feedback + Centralized H2 control based on accelerometersxie17_model_contr_hybrid_passiv_activ
Harbin (China)Voice CoilAccelerometersMIMO H-Infinity, active dampingjiao18_dynam_model_exper_analy_stewar
+
+
+
+ +
+

3.5. Long Stroke Stewart Platforms

+
+

+ +

+ + + + +++ ++ ++ ++ ++ ++ + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + @@ -384,13 +1931,8 @@ Things to add: - - - - - - - + + @@ -398,433 +1940,17 @@ Things to add: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + - - - - - - - - + + @@ -832,589 +1958,81 @@ Things to add: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + +
Link to bibliographyUniversityActuatorsSensorsControlMain Object
cleary91_protot_paral_manipJapanDC, gear + rack pinionEncoder, 7um resDecentralized (struts), PID control Singular configuration analysis, workspace
(Geng and Haynes 1993), (Geng and Haynes 1994)1XVibration IsolationCubic (6-UPU)FlexibleMagnetostrictiveForce, AccelerometersRobust Adaptative FilterLinear ModelHardware implementation
(Geng et al. 1995) XVibration IsolationCubicFlexibleMagnetostrictiveForce, AccelerometersTwo layers: Decentralized Force Feedback, Robust Adaptative ControlLinear ModelTwo layer control for active damping and vibration isolation
(Spanos, Rahman, and Blackwood 1995) XVibration Isolation (Space)CubicFlexibleVoice CoilForceDecentralized Force Feedback Decentralized force feedback to reduce the transmissibility
(Thayer and Vagners 1998), (Thayer et al. 2002) X Cubic Voice CoilForce, LVDT, GeophonesLQGFEM => State Space 
(O’Brien et al. 1998)      su04_distur_rejec_high_precis_motionXidian (China)      
(McInroy, O’Brien, and Neat 1999)      huang05_smoot_stewarTaiwan      
(McInroy 1999)          
(McInroy and Hamann 2000)          
(Kim, Kang, and Lee 2000)          
(Chen and McInroy 2000)          
(Li, Hamann, and McInroy 2001)          
(Selig and Ding 2001)     Spring-Dashpot Model VibrationEquations of motion, K, CEigen-solutions of EoM
(Bonev and Ryu 2001)         Computes orientation workspace
(Gao et al. 2002)         New structure for Parallel Manipulator Designs
(Chai, Young, and Tuersley 2002)          
(McInroy 2002)          
(Abu Hanieh, Horodinca, and Preumont 2002)          
(Jafari and McInroy 2003)          
(Chen, Bishop, and Agrawal 2003)          
(Lee et al. 2003)          
(Wang et al. 2003)    Flexible     
(Lin and McInroy 2003)          
(Agrawal and Chen 2004)          
(Cheng, Ren, and Dai 2004), (Gexue et al. 2004)  Vibration Isolation6-TPS  InertialDecentralized PDMulti-BodyControl architectures for vibration control of Stewart platform on top of a flexible support
(Hauge and Campbell 2004) XVibration IsolationCubicFlexibleVoice CoilForce and InertialLQG, Decentralized, Sensor FusionSingle axisCombine force/inertial sensors
(Furutani, Suzuki, and Kudoh 2004)          
(Ranganath et al. 2004)          
(Chen and McInroy 2004)          
(Su et al. 2004) X        
(Huang and Fu 2005)          
(Ting, Jar, and Li 2006), (Ting, Li, and Nguyen 2013) X        
(Horin and Shoham 2006)          
(Preumont et al. 2007)          
(Ting, Jar, and Li 2007)          
(Lei and Benli 2008)    FlexiblePiezoelectric H-Infinity and mu-synthesis  
(Bvrezina, Andrvs, and Bvrezina 2008)     brezina08_ni_labview_matlab_simmec_stewar_platf_desig, houska10_desig_implem_absol_linear_positCzech DC    Multi-Body - Sim mechanics Modeling with sim-mechanics
(Molina, Rosario, and Sanchez 2008)      molina08_simul_stewarBrazil      
(Dong, Sun, and Du 2008), (Dong, Sun, and Du 2007)          
(Heertjes, Engelen, and Steinbuch 2010)          
(Neagoe et al. 2010)          
(Beno, Booth, and Mock 2010)          
(Yang et al. 2010)     yang10_model_dof_simul_simmecChina     Decentralized PID  Simulation with Simulink/SimMechanics
(Bvrezina and Bvrezina 2010)   6-UPS DC   State Space control with torque observer
(Houvska, Bvrezina, and Bvrezina 2010) X  ConventionalDCAbsolute Linear position  Design and Implementation of linear position sensor for a ball screw actuator
(Bvrezina and Bvrezina 2010)   6-UPS DC Ball Screw Two layers: torque control + DC synchronizationSim mechanicsController design using a torque observer
(Zhang et al. 2011) X Non-cubicFlexibleMagnetostrictiveInertialVibration, adaptive filters Design and Control of flexure joint Hexapods
(Yun and Li 2011)          
(Pu et al. 2011)          
(Ding, Damen, and Bosch 2011)          
(Torii et al. 2012) X  FlexibleInchworm    
(Pedrammehr, Mahboubkhah, and Khani 2012) X 6-UPS    Analytical, FEMVariations of K with the pose
(Xu and Weng 2013)          
(Baig and Pugazhenthi 2014) X     Vibration isolationMatlab/SimulinkParameter optimization based on Transmissibility
(Du, Shi, and Dong 2014) X 6-SPS (Optimized)FlexiblePZT PiezoStrain GaugePointing Workspace, Stiffness analyzed
(Abbas and Hai 2014)   Non-cubic Voice CoilAccelerometer in each legCentralized Vibration Control, PI, Skyhook  
(Lara-Molina, Koroishi, and Dumur 2015)         Optimal Design, Sensitivity Analysis
(Thier et al. 2016)          
(Wang et al. 2016) X CubicFlexiblePiezoelectricForce Sensor + AccelerometerVibration isolation, HAC-LAC (IFF + FxLMS)Flexible Elements (FRF)Dynamic Model + Vibration Control
(Yang et al. 2017)          
(Beijen, Heertjes, et al. 2018)          
(Jiao et al. 2018) X  FlexibleVoice CoilAccelerometersMIMO H-Infinity, active dampingAnalyticalModel + active damping with flexible hinges
(Tang, Cao, and Yu 2018) X Cubic Voice CoilAccelerometer in each legDecentralized vibration control Vibration Control with VCM and Decentralized control
(Taghavi, Kinoshita, and Bock 2019)   6-SCSConventional--Passive DampingMatlab/Simscape6dof passive damper
(Owoc, Ludwiczak, and Piotrowski 2019)     Rotary PID Low cost Stewart-Platform
(Min, Huang, and Su 2019)   Cubic PiezoelectricLeg lengthTracking control, ADRC, State observerAnalyticalUse of ADRC for tracking control of cubic hexapod
(Yang et al. 2019)1X 6-UPS (Cubic?)FlexiblePiezoelectricForce, PositionVibration isolation, Model-Based, Modal controlSolid/FlexibleStiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space
(Stabile et al. 2019)          
(Tong, Gosselin, and Jiang 2020)         kim00_robus_track_contr_desig_dof_paral_manipSeoulHydraulicLVDTDecentralized (strut) vs Centralized (cartesian)  
+
-
-

6 Articles - Other architectures

-

+ref.bib

- -

Bibliography

-
-
Abbas, Hussain, and Huang Hai. 2014. “Vibration Isolation Concepts for Non-Cubic Stewart Platform Using Modal Control.” In Proceedings of 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST) Islamabad, Pakistan, 14th - 18th January, 2014, nil. https://doi.org/10.1109/ibcast.2014.6778139.
-
Abu Hanieh, Ahmed, Mihaita Horodinca, and Andre Preumont. 2002. “Stiff and Soft Stewart Platforms for Active Damping and Active Isolation of Vibrations.” In Actuator 2002, 8th International Conference on New Actuators.
-
Agrawal, Brij N, and Hong-Jen Chen. 2004. “Algorithms for Active Vibration Isolation on Spacecraft Using a Stewart Platform.” Smart Materials and Structures 13 (4):873–80. https://doi.org/10.1088/0964-1726/13/4/025.
-
Anderson, Eric H., Michael F. Cash, Paul C. Janzen, Gregory W. Pettit, and Christian A. Smith. 2006. “Precision, Range, Bandwidth, and Other Tradeoffs in Hexapods with Application to Large Ground-Based Telescopes.” In Optomechanical Technologies for Astronomy, nil. https://doi.org/10.1117/12.672947.
-
Arakelian, V. 2018. Dynamic Decoupling of Robot Manipulators. Mechanisms and Machine Science. Springer International Publishing. https://doi.org/10.1007/978-3-319-74363-9.
-
Baig, R Ulla, and S Pugazhenthi. 2014. “Neural Network Optimization of Design Parameters of Stewart Platform for Effective Active Vibration Isolation.” Journal of Engineering and Applied Sciences 9 (4):78–84.
-
Beijen, M.A., M.F. Heertjes, J. Van Dijk, and W.B.J. Hakvoort. 2018. “Self-Tuning Mimo Disturbance Feedforward Control for Active Hard-Mounted Vibration Isolators.” Control Engineering Practice 72 (nil):90–103. https://doi.org/10.1016/j.conengprac.2017.11.008.
-
Beijen, Michiel A., Robbert Voorhoeve, Marcel F. Heertjes, and Tom Oomen. 2018. “Experimental Estimation of Transmissibility Matrices for Industrial Multi-Axis Vibration Isolation Systems.” Mechanical Systems and Signal Processing 107 (nil):469–83. https://doi.org/10.1016/j.ymssp.2018.01.013.
-
Beno, Joseph H., John A. Booth, and Jason Mock. 2010. “An Alternative Architecture and Control Strategy for Hexapod Positioning Systems to Simplify Structural Design and Improve Accuracy.” In Ground-Based and Airborne Telescopes III, nil. https://doi.org/10.1117/12.856760.
-
Bonev, Ilian A., and Jeha Ryu. 2001. “A New Approach to Orientation Workspace Analysis of 6-Dof Parallel Manipulators.” Mechanism and Machine Theory 36 (1):15–28. https://doi.org/10.1016/s0094-114x(00)00032-x.
-
Buzurovic, Ivan. 2012. “Advanced Control Methodologies in Parallel Robotic Systems.” Advances in Robotics & Automation 01 (s6):nil. https://doi.org/10.4172/2168-9695.s6-e001.
-
Bvrezina, Lukávs, Ondvrej Andrvs, and Tomávs Bvrezina. 2008. “Ni Labview-Matlab Simmechanics Stewart Platform Design.” Applied and Computational Mechanics. University of West Bohemia.
-
Bvrezina, T., and L. Bvrezina. 2010. “Controller Design of the Stewart Platform Linear Actuator.” In Recent Advances in Mechatronics, 341–46. Recent Advances in Mechatronics. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-05022-0_58.
-
Chai, Kok-Soon, Ken Young, and Ian Tuersley. 2002. “A Practical Calibration Process Using Partial Information for a Commercial Stewart Platform.” Robotica 20 (03):nil. https://doi.org/10.1017/s0263574701004027.
-
Cheng, Yuan, Gexue Ren, and ShiLiang Dai. 2004. “The Multi-Body System Modelling of the Gough-Stewart Platform for Vibration Control.” Journal of Sound and Vibration 271 (3-5):599–614. https://doi.org/10.1016/s0022-460x(03)00283-9.
-
Chen, Hong-Jen, Ronald Bishop, and Brij Agrawal. 2003. “Payload Pointing and Active Vibration Isolation Using Hexapod Platforms.” In 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, nil. https://doi.org/10.2514/6.2003-1643.
-
Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” IEEE Transactions on Control Systems Technology 12 (3):413–21. https://doi.org/10.1109/tcst.2004.824339.
-
Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), nil. https://doi.org/10.1109/robot.2000.844878.
-
Chi, Weichao, Dengqing Cao, Dongwei Wang, Jie Tang, Yifan Nie, and Wenhu Huang. 2015. “Design and Experimental Study of a Vcm-Based Stewart Parallel Mechanism Used for Active Vibration Isolation.” Energies 8 (8):8001–19. https://doi.org/10.3390/en8088001.
-
Cleary, K., and T. Arai. 1991. “A Prototype Parallel Manipulator: Kinematics, Construction, Software, Workspace Results, and Singularity Analysis.” In Proceedings. 1991 IEEE International Conference on Robotics and Automation, nil. https://doi.org/10.1109/robot.1991.131641.
-
Dasgupta, Bhaskar, and T.S. Mruthyunjaya. 2000. “The Stewart Platform Manipulator: A Review.” Mechanism and Machine Theory 35 (1):15–40. https://doi.org/10.1016/s0094-114x(99)00006-3.
-
Deng, R. 2017. “Integrated 6-DoF Lorentz Actuator with Gravity Compensation for Vibration Isolation in in-Line Surface Metrology.” TU Delft.
-
Ding, Chenyang, A. A. H. Damen, and P. P. J. van den Bosch. 2011. “Robust Vibration Isolation of a 6-DOF System Using Modal Decomposition and Sliding Surface Optimization.” In Proceedings of the 2011 American Control Conference, nil. https://doi.org/10.1109/acc.2011.5991084.
-
Dong, Wei, Lining Sun, and Zhijiang Du. 2008. “Stiffness Research on a High-Precision, Large-Workspace Parallel Mechanism with Compliant Joints.” Precision Engineering 32 (3):222–31. https://doi.org/10.1016/j.precisioneng.2007.08.002.
-
Dong, W., L.N. Sun, and Z.J. Du. 2007. “Design of a Precision Compliant Parallel Positioner Driven by Dual Piezoelectric Actuators.” Sensors and Actuators a: Physical 135 (1):250–56. https://doi.org/10.1016/j.sna.2006.07.011.
-
Du, Zhijiang, Ruochong Shi, and Wei Dong. 2014. “A Piezo-Actuated High-Precision Flexible Parallel Pointing Mechanism: Conceptual Design, Development, and Experiments.” IEEE Transactions on Robotics 30 (1):131–37. https://doi.org/10.1109/tro.2013.2288800.
-
Furqan, Mohd, Mohd Suhaib, and Nazeer Ahmad. 2017. “Studies on Stewart Platform Manipulator: A Review.” Journal of Mechanical Science and Technology 31 (9):4459–70. https://doi.org/10.1007/s12206-017-0846-1.
-
Furutani, Katsushi, Michio Suzuki, and Ryusei Kudoh. 2004. “Nanometre-Cutting Machine Using a Stewart-Platform Parallel Mechanism.” Measurement Science and Technology 15 (2):467–74. https://doi.org/10.1088/0957-0233/15/2/022.
-
Gao, Feng, Weimin Li, Xianchao Zhao, Zhenlin Jin, and Hui Zhao. 2002. “New Kinematic Structures for 2-, 3-, 4-, and 5-Dof Parallel Manipulator Designs.” Mechanism and Machine Theory 37 (11):1395–1411. https://doi.org/10.1016/s0094-114x(02)00044-7.
-
Geng, Zheng, and Leonard S. Haynes. 1993. “Six-Degree-of-Freedom Active Vibration Isolation Using a Stewart Platform Mechanism.” Journal of Robotic Systems 10 (5):725–44. https://doi.org/10.1002/rob.4620100510.
-
Geng, Z.J., and L.S. Haynes. 1994. “Six Degree-of-Freedom Active Vibration Control Using the Stewart Platforms.” IEEE Transactions on Control Systems Technology 2 (1):45–53. https://doi.org/10.1109/87.273110.
-
Geng, Z. Jason, George G. Pan, Leonard S. Haynes, Ben K. Wada, and John A. Garba. 1995. “An Intelligent Control System for Multiple Degree-of-Freedom Vibration Isolation.” Journal of Intelligent Material Systems and Structures 6 (6):787–800. https://doi.org/10.1177/1045389x9500600607.
-
Gexue, Ren, Lu Qiuhai, Hu Ning, Nan Rendong, and Peng Bo. 2004. “On Vibration Control with Stewart Parallel Mechanism.” Mechatronics 14 (1):1–13. https://doi.org/10.1016/s0957-4158(02)00092-2.
-
Guo, HongBo, YongGuang Liu, GuiRong Liu, and HongRen Li. 2008. “Cascade Control of a Hydraulically Driven 6-Dof Parallel Robot Manipulator Based on a Sliding Mode.” Control Engineering Practice 16 (9):1055–68. https://doi.org/10.1016/j.conengprac.2007.11.005.
-
Hanieh, Ahmed Abu. 2003. “Active Isolation and Damping of Vibrations via Stewart Platform.” Université Libre de Bruxelles, Brussels, Belgium.
-
Hauge, G.S., and M.E. Campbell. 2004. “Sensors and Control of a Space-Based Six-Axis Vibration Isolation System.” Journal of Sound and Vibration 269 (3-5):913–31. https://doi.org/10.1016/s0022-460x(03)00206-2.
-
Heertjes, Marcel F, Arjan JP van Engelen, and Maarten Steinbuch. 2010. “Optimized Dynamic Decoupling in Active Vibration Isolation.” IFAC Proceedings Volumes 43 (18). Elsevier:293–98.
-
Horin, P. Ben, and M. Shoham. 2006. “Singularity Condition of Six-Degree-of-Freedom Three-Legged Parallel Robots Based on Grassmann-Cayley Algebra.” IEEE Transactions on Robotics 22 (4):577–90. https://doi.org/10.1109/tro.2006.878958.
-
Houvska, P., T. Bvrezina, and L. Bvrezina. 2010. “Design and Implementation of the Absolute Linear Position Sensor for the Stewart Platform.” In Recent Advances in Mechatronics, 347–52. Recent Advances in Mechatronics. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-05022-0_59.
-
Huang, Chin I, and Li-Chen Fu. 2005. “Smooth Sliding Mode Tracking Control of the Stewart Platform.” In Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005., nil. https://doi.org/10.1109/cca.2005.1507098.
-
Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” IEEE Transactions on Robotics and Automation 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. https://doi.org/10.1109/tra.2003.814506.
-
Jiang, Qimi, and Clément M. Gosselin. 2009a. “Determination of the Maximal Singularity-Free Orientation Workspace for the Gough-Stewart Platform.” Mechanism and Machine Theory 44 (6):1281–93. https://doi.org/10.1016/j.mechmachtheory.2008.07.005.
-
———. 2009b. “Evaluation and Representation of the Theoretical Orientation Workspace of the Gough-Stewart Platform.” Journal of Mechanisms and Robotics 1 (2):nil. https://doi.org/10.1115/1.3046137.
-
Jiao, Jian, Ying Wu, Kaiping Yu, and Rui Zhao. 2018. “Dynamic Modeling and Experimental Analyses of Stewart Platform with Flexible Hinges.” Journal of Vibration and Control 25 (1):151–71. https://doi.org/10.1177/1077546318772474.
-
Jin, Yan, I-Ming Chen, and Guilin Yang. 2009. “Kinematic Design of a Family of 6-Dof Partially Decoupled Parallel Manipulators.” Mechanism and Machine Theory 44 (5):912–22. https://doi.org/10.1016/j.mechmachtheory.2008.06.004.
-
Kim, Dong Hwan, Ji-Yoon Kang, and Kyo-Il Lee. 2000. “Robust Tracking Control Design for a 6 Dof Parallel Manipulator.” Journal of Robotic Systems 17 (10):527–47. https://doi.org/10.1002/1097-4563(200010)17:10$<$527:AID-ROB2>3.0.CO;2-A.
-
Kim, Hwa Soo, and Young Man Cho. 2009. “Design and Modeling of a Novel 3-Dof Precision Micro-Stage.” Mechatronics 19 (5):598–608. https://doi.org/10.1016/j.mechatronics.2009.01.004.
-
Lara-Molina, F.A., E.H. Koroishi, and Didier Dumur. 2015. “Combined Structure-Control Optimal Design of the Stewart-Gough Robot.” In 2015 12th Latin American Robotics Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR), nil. https://doi.org/10.1109/lars-sbr.2015.26.
-
Lee, Se-Han, Jae-Bok Song, Woo-Chun Choi, and Daehie Hong. 2003. “Position Control of a Stewart Platform Using Inverse Dynamics Control with Approximate Dynamics.” Mechatronics 13 (6):605–19. https://doi.org/10.1016/s0957-4158(02)00033-8.
-
Legnani, G., I. Fassi, H. Giberti, S. Cinquemani, and D. Tosi. 2012. “A New Isotropic and Decoupled 6-Dof Parallel Manipulator.” Mechanism and Machine Theory 58 (nil):64–81. https://doi.org/10.1016/j.mechmachtheory.2012.07.008.
-
Lei, Liu, and Wang Benli. 2008. “Multi Objective Robust Active Vibration Control for Flexure Jointed Struts of Stewart Platforms via $H_Infty$ and $mu$ Synthesis.” Chinese Journal of Aeronautics 21 (2):125–33. https://doi.org/10.1016/s1000-9361(08)60016-3.
-
Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” IEEE Transactions on Control Systems Technology 11 (2):267–72. https://doi.org/10.1109/tcst.2003.809248.
-
Liu, Xin-Jun, Jinsong Wang, Feng Gao, and Li-Ping Wang. 2001. “On the Design of 6-DOF Parallel Micro-Motion Manipulators.” In Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180), nil. https://doi.org/10.1109/iros.2001.973381.
-
Li, Xiaochun. 2001. “Simultaneous, Fault-Tolerant Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” University of Wyoming.
-
Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In Smart Structures and Materials 2001: Smart Structures and Integrated Systems, nil. https://doi.org/10.1117/12.436521.
-
Li, Yao, XiaoLong Yang, HongTao Wu, and Bai Chen. 2018. “Optimal Design of a Six-Axis Vibration Isolator via Stewart Platform by Using Homogeneous Jacobian Matrix Formulation Based on Dual Quaternions.” Journal of Mechanical Science and Technology 32 (1):11–19. https://doi.org/10.1007/s12206-017-1202-1.
-
McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328), nil. https://doi.org/10.1109/cca.1999.806694.
-
———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” IEEE/ASME Transactions on Mechatronics 7 (1):95–99. https://doi.org/10.1109/3516.990892.
-
McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” IEEE Transactions on Robotics and Automation 16 (4):372–81. https://doi.org/10.1109/70.864229.
-
McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” IEEE/ASME Transactions on Mechatronics 4 (1):91–95. https://doi.org/10.1109/3516.752089.
-
Merlet, Jean-Pierre. 2002. “Still a Long Way to Go on the Road for Parallel Mechanisms.” In Proc. ASME 2002 DETC Conf., Montreal.
-
Merlet, J.P. 2006. Parallel Robots. Dordrecht Boston, MA: Kluwer Academic Publishers.
-
Min, Da, Deqing Huang, and Hu Su. 2019. “High-Precision Tracking of Cubic Stewart Platform Using Active Disturbance Rejection Control.” In 2019 Chinese Control Conference (CCC), nil. https://doi.org/10.23919/chicc.2019.8866606.
-
Molina, Fabian Andres Lara, Joao Mauricio Rosario, and Oscar Fernando Aviles Sanchez. 2008. “Simulation Environment Proposal, Analysis and Control of a Stewart Platform Manipulator.” In 7th Brazilian Conference on Dynamics, Control & Applications.
-
Mukherjee, Parthajit, Bhaskar Dasgupta, and A.K. Mallik. 2007. “Dynamic Stability Index and Vibration Analysis of a Flexible Stewart Platform.” Journal of Sound and Vibration 307 (3-5). Elsevier BV:495–512. https://doi.org/10.1016/j.jsv.2007.05.036.
-
Neagoe, Mircea, Dorin Diaconescu, Codruta Jaliu, Sergiu-Dan Stan, Nadia Cretescu, and Radu Saulescu. 2010. “On the Accuracy of a Stewart Platform: Modelling and Experimental Validation.” In Computational Intelligence and Modern Heuristics. InTech.
-
Owoc, Dawid, Krzysztof Ludwiczak, and Robert Piotrowski. 2019. “Mechatronics Design, Modelling and Controlling of the Stewart-Gough Platform.” In 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR), nil. https://doi.org/10.1109/mmar.2019.8864694.
-
O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), nil. https://doi.org/10.1109/acc.1998.703532.
-
Patel, Y. D., and P. M. George. 2012. “Parallel Manipulators Applications-a Survey.” Modern Mechanical Engineering 02 (03). Scientific Research Publishing, Inc,:57–64. https://doi.org/10.4236/mme.2012.23008.
-
Pedrammehr, Siamak, Mehran Mahboubkhah, and Navid Khani. 2012. “A Study on Vibration of Stewart Platform-Based Machine Tool Table.” The International Journal of Advanced Manufacturing Technology 65 (5-8):991–1007. https://doi.org/10.1007/s00170-012-4234-9.
-
Pernkopf, F, and M L Husty. 2006. “Workspace Analysis of Stewart-Gough-Type Parallel Manipulators.” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 220 (7):1019–32. https://doi.org/10.1243/09544062jmes194.
-
Preumont, A., M. Horodinca, I. Romanescu, B. de Marneffe, M. Avraam, A. Deraemaeker, F. Bossens, and A. Abu Hanieh. 2007. “A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform.” Journal of Sound and Vibration 300 (3-5):644–61. https://doi.org/10.1016/j.jsv.2006.07.050.
-
Preumont, Andre. 2018. Vibration Control of Active Structures - Fourth Edition. Solid Mechanics and Its Applications. Springer International Publishing. https://doi.org/10.1007/978-3-319-72296-2.
-
Pu, H, X Chen, Z Zhou, and X Luo. 2011. “Six-Degree-of-Freedom Active Vibration Isolation System with Decoupled Collocated Control.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 226 (2):313–25. https://doi.org/10.1177/0954405411414336.
-
Rahman, Zahidul, and John Spanos. 1996. “Six Axis Vibration Isolation, Suppression and Steering System for Space Applications.” In Dynamics Specialists Conference, nil. https://doi.org/10.2514/6.1996-1211.
-
Rahman, Zahidul H., John T. Spanos, and Robert A. Laskin. 1998. “Multiaxis Vibration Isolation, Suppression, and Steering System for Space Observational Applications.” In Telescope Control Systems III, nil. https://doi.org/10.1117/12.308821.
-
Ranganath, R, P.S Nair, T.S Mruthyunjaya, and A Ghosal. 2004. “A Force-Torque Sensor Based on a Stewart Platform in a Near-Singular Configuration.” Mechanism and Machine Theory 39 (9):971–98. https://doi.org/10.1016/j.mechmachtheory.2004.04.005.
-
Selig, J.M., and X. Ding. 2001. “Theory of Vibrations in Stewart Platforms.” In Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180), 2190–95. https://doi.org/10.1109/iros.2001.976395.
-
Spanos, J., Z. Rahman, and G. Blackwood. 1995. “A Soft 6-Axis Active Vibration Isolator.” In Proceedings of 1995 American Control Conference - ACC’95, nil. https://doi.org/10.1109/acc.1995.529280.
-
Stabile, Alessandro, Emilia Wegrzyn, Guglielmo S Aglietti, Guy Richardson, and Geert Smet. 2019. “Design and Analysis of a Novel Hexapod Platform for High-Performance Micro-Vibration Mitigation.” In Proc. 18. European Space Mechanisms and Tribology Symposium.
-
Su, Y.X., B.Y. Duan, C.H. Zheng, Y.F. Zhang, G.D. Chen, and J.W. Mi. 2004. “Disturbance-Rejection High-Precision Motion Control of a Stewart Platform.” IEEE Transactions on Control Systems Technology 12 (3):364–74. https://doi.org/10.1109/tcst.2004.824315.
-
Taghavi, Meysam, Taku Kinoshita, and Thomas Bock. 2019. “Design, Modelling and Simulation of Novel Hexapod-Shaped Passive Damping System for Coupling Cable Robot and End Effector in Curtain Wall Module Installation Application.” In Proceedings of the 36th International Symposium on Automation and Robotics in Construction (ISARC), nil. https://doi.org/10.22260/isarc2019/0089.
-
Taghirad, Hamid. 2013. Parallel Robots : Mechanics and Control. Boca Raton, FL: CRC Press.
-
Tang, Jie, Dengqing Cao, and Tianhu Yu. 2018. “Decentralized Vibration Control of a Voice Coil Motor-Based Stewart Parallel Mechanism: Simulation and Experiments.” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233 (1):132–45. https://doi.org/10.1177/0954406218756941.
-
Thayer, D., and J. Vagners. 1998. “A Look at the Pole/Zero Structure of a Stewart Platform Using Special Coordinate Basis.” In Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), nil. https://doi.org/10.1109/acc.1998.703595.
-
Thayer, Doug, Mark Campbell, Juris Vagners, and Andrew von Flotow. 2002. “Six-Axis Vibration Isolation System Using Soft Actuators and Multiple Sensors.” Journal of Spacecraft and Rockets 39 (2):206–12. https://doi.org/10.2514/2.3821.
-
Thier, Markus, Rudolf Saathof, Andreas Sinn, Reinhard Hainisch, and Georg Schitter. 2016. “Six Degree of Freedom Vibration Isolation Platform for in-Line Nano-Metrology.” IFAC-PapersOnLine 49 (21):149–56. https://doi.org/10.1016/j.ifacol.2016.10.534.
-
Ting, Yung, H.-C. Jar, and Chun-Chung Li. 2006. “Design of a 6DOF Stewart-Type Nanoscale Platform.” In 2006 Sixth IEEE Conference on Nanotechnology, nil. https://doi.org/10.1109/nano.2006.247808.
-
Ting, Yung, Ho-Chin Jar, and Chun-Chung Li. 2005. “Error Compensation and Feedforward Controller Design for a 6-Dof Micro-Positioning Platform.” In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, nil. https://doi.org/10.1109/iros.2005.1545073.
-
———. 2007. “Measurement and Calibration for Stewart Micromanipulation System.” Precision Engineering 31 (3):226–33. https://doi.org/10.1016/j.precisioneng.2006.09.004.
-
Ting, Yung, Chun-Chung Li, and Tho Van Nguyen. 2013. “Composite Controller Design for a 6dof Stewart Nanoscale Platform.” Precision Engineering 37 (3):671–83. https://doi.org/10.1016/j.precisioneng.2013.01.012.
-
Tong, Zhizhong, Clément Gosselin, and Hongzhou Jiang. 2020. “Dynamic Decoupling Analysis and Experiment Based on a Class of Modified Gough-Stewart Parallel Manipulators with Line Orthogonality.” Mechanism and Machine Theory 143 (nil):103636. https://doi.org/10.1016/j.mechmachtheory.2019.103636.
-
Torii, Akihiro, Masaaki Banno, Akiteru Ueda, and Kae Doki. 2012. “A Small-Size Self-Propelled Stewart Platform.” Electrical Engineering in Japan 181 (2):37–46. https://doi.org/10.1002/eej.21261.
-
Tsai, K.Y., and K.D. Huang. 2003. “The Design of Isotropic 6-Dof Parallel Manipulators Using Isotropy Generators.” Mechanism and Machine Theory 38 (11):1199–1214. https://doi.org/10.1016/s0094-114x(03)00067-3.
-
Vivas, Oscar Andrés. 2004. “Contribution À L’identification Et À La Commande Des Robots Parallèles.” Université Montpellier II-Sciences et Techniques du Languedoc.
-
Wang, Chaoxin, Xiling Xie, Yanhao Chen, and Zhiyi Zhang. 2016. “Investigation on Active Vibration Isolation of a Stewart Platform with Piezoelectric Actuators.” Journal of Sound and Vibration 383 (November). Elsevier BV:1–19. https://doi.org/10.1016/j.jsv.2016.07.021.
-
Wang, Shao-Chi, Hiromitsu Hikita, Hiroshi Kubo, Yong-Sheng Zhao, Zhen Huang, and Tohru Ifukube. 2003. “Kinematics and Dynamics of a 6 Degree-of-Freedom Fully Parallel Manipulator with Elastic Joints.” Mechanism and Machine Theory 38 (5):439–61. https://doi.org/10.1016/s0094-114x(02)00132-5.
-
Xie, Xiling, Chaoxin Wang, and Zhiyi Zhang. 2017. “Modeling and Control of a Hybrid Passive/Active Stewart Vibration Isolation Platform.” In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 255:1844–53. Institute of Noise Control Engineering.
-
Xu, Zhao-dong, and Chen-hui Weng. 2013. “Track-Position and Vibration Control Simulation for Strut of the Stewart Platform.” Journal of Zhejiang University SCIENCE a 14 (4):281–91. https://doi.org/10.1631/jzus.a1200278.
-
Yang, Chifu, Zhengmao Ye, O. Ogbobe Peter, and Junwei Han. 2010. “Modeling and Simulation of Spatial 6-DOF Parallel Robots Using Simulink and SimMechanics.” In 2010 3rd International Conference on Computer Science and Information Technology, nil. https://doi.org/10.1109/iccsit.2010.5563824.
-
Yang, G., I.-M. Chen, W. Chen, and W. Lin. 2004. “Kinematic Design of a Six-Dof Parallel-Kinematics Machine with Decoupled-Motion Architecture.” IEEE Transactions on Robotics 20 (5):876–84. https://doi.org/10.1109/tro.2004.829485.
-
Yang, XiaoLong, HongTao Wu, Bai Chen, ShengZheng Kang, and ShiLi Cheng. 2019. “Dynamic Modeling and Decoupled Control of a Flexible Stewart Platform for Vibration Isolation.” Journal of Sound and Vibration 439 (January). Elsevier BV:398–412. https://doi.org/10.1016/j.jsv.2018.10.007.
-
Yang, XiaoLong, HongTao Wu, Yao Li, and Bai Chen. 2017. “Dynamic Isotropic Design and Decentralized Active Control of a Six-Axis Vibration Isolator via Stewart Platform.” Mechanism and Machine Theory 117 (nil):244–52. https://doi.org/10.1016/j.mechmachtheory.2017.07.017.
-
Yun, Yuan, and Yangmin Li. 2010. “Design and Analysis of a Novel 6-Dof Redundant Actuated Parallel Robot with Compliant Hinges for High Precision Positioning.” Nonlinear Dynamics 61 (4):829–45. https://doi.org/10.1007/s11071-010-9690-x.
-
———. 2011. “A General Dynamics and Control Model of a Class of Multi-Dof Manipulators for Active Vibration Control.” Mechanism and Machine Theory 46 (10):1549–74. https://doi.org/10.1016/j.mechmachtheory.2011.04.010.
-
Zhang, Zhen, J Liu, Jq Mao, Yx Guo, and Yh Ma. 2011. “Six DOF Active Vibration Control Using Stewart Platform with Non-Cubic Configuration.” In 2011 6th IEEE Conference on Industrial Electronics and Applications, nil. https://doi.org/10.1109/iciea.2011.5975679.
-
Zheng, Yan, Zhicheng Zhou, and Hai Huang. 2020. “A Multi-Frequency Mimo Control Method for the 6dof Micro-Vibration Exciting System.” Acta Astronautica 170 (nil):552–69. https://doi.org/10.1016/j.actaastro.2020.02.033.
-
Zheng, Yisheng, Qingpin Li, Bo Yan, Yajun Luo, and Xinong Zhang. 2018. “A Stewart Isolator with High-Static-Low-Dynamic Stiffness Struts Based on Negative Stiffness Magnetic Springs.” Journal of Sound and Vibration 422 (nil):390–408. https://doi.org/10.1016/j.jsv.2018.02.046.
-

Author: Dehaeze Thomas

-

Created: 2021-01-08 ven. 15:30

+

Created: 2024-09-25 Wed 15:17

diff --git a/docs/figs/afzali_parametrization_hexapod.png b/docs/figs/afzali_parametrization_hexapod.png new file mode 100644 index 0000000..3813430 Binary files /dev/null and b/docs/figs/afzali_parametrization_hexapod.png differ diff --git a/docs/figs/afzali_stewart_platform_characteristics.png b/docs/figs/afzali_stewart_platform_characteristics.png new file mode 100644 index 0000000..497a9e1 Binary files /dev/null and b/docs/figs/afzali_stewart_platform_characteristics.png differ diff --git a/docs/figs/afzali_top_view.png b/docs/figs/afzali_top_view.png new file mode 100644 index 0000000..1e09046 Binary files /dev/null and b/docs/figs/afzali_top_view.png differ diff --git a/docs/figs/introduction_stewart_mov_pos.pdf b/docs/figs/introduction_stewart_mov_pos.pdf new file mode 100644 index 0000000..ff1de72 Binary files /dev/null and b/docs/figs/introduction_stewart_mov_pos.pdf differ diff --git a/docs/figs/introduction_stewart_mov_pos.png b/docs/figs/introduction_stewart_mov_pos.png new file mode 100644 index 0000000..6aa8752 Binary files /dev/null and b/docs/figs/introduction_stewart_mov_pos.png differ diff --git a/docs/figs/introduction_stewart_rest_pos.pdf b/docs/figs/introduction_stewart_rest_pos.pdf new file mode 100644 index 0000000..e980f7a Binary files /dev/null and b/docs/figs/introduction_stewart_rest_pos.pdf differ diff --git a/docs/figs/introduction_stewart_rest_pos.png b/docs/figs/introduction_stewart_rest_pos.png new file mode 100644 index 0000000..6ac20df Binary files /dev/null and b/docs/figs/introduction_stewart_rest_pos.png differ diff --git a/docs/figs/stewart_examples/stewart_beijen.jpg b/docs/figs/stewart_examples/stewart_beijen.jpg new file mode 100644 index 0000000..151052d Binary files /dev/null and b/docs/figs/stewart_examples/stewart_beijen.jpg differ diff --git a/docs/figs/stewart_examples/stewart_cleary.jpg b/docs/figs/stewart_examples/stewart_cleary.jpg new file mode 100644 index 0000000..2748571 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_cleary.jpg differ diff --git a/docs/figs/stewart_examples/stewart_czech.jpg b/docs/figs/stewart_examples/stewart_czech.jpg new file mode 100644 index 0000000..350732d Binary files /dev/null and b/docs/figs/stewart_examples/stewart_czech.jpg differ diff --git a/docs/figs/stewart_examples/stewart_dong07.jpg b/docs/figs/stewart_examples/stewart_dong07.jpg new file mode 100644 index 0000000..6297139 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_dong07.jpg differ diff --git a/docs/figs/stewart_examples/stewart_du14.jpg b/docs/figs/stewart_examples/stewart_du14.jpg new file mode 100644 index 0000000..9f452df Binary files /dev/null and b/docs/figs/stewart_examples/stewart_du14.jpg differ diff --git a/docs/figs/stewart_examples/stewart_furutani.jpg b/docs/figs/stewart_examples/stewart_furutani.jpg new file mode 100644 index 0000000..bc776ac Binary files /dev/null and b/docs/figs/stewart_examples/stewart_furutani.jpg differ diff --git a/docs/figs/stewart_examples/stewart_geng.jpg b/docs/figs/stewart_examples/stewart_geng.jpg new file mode 100644 index 0000000..55f82c0 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_geng.jpg differ diff --git a/docs/figs/stewart_examples/stewart_ht_uw.jpg b/docs/figs/stewart_examples/stewart_ht_uw.jpg new file mode 100644 index 0000000..a4fa4f8 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_ht_uw.jpg differ diff --git a/docs/figs/stewart_examples/stewart_iran.jpg b/docs/figs/stewart_examples/stewart_iran.jpg new file mode 100644 index 0000000..22992bf Binary files /dev/null and b/docs/figs/stewart_examples/stewart_iran.jpg differ diff --git a/docs/figs/stewart_examples/stewart_jpl.jpg b/docs/figs/stewart_examples/stewart_jpl.jpg new file mode 100644 index 0000000..7bedf4a Binary files /dev/null and b/docs/figs/stewart_examples/stewart_jpl.jpg differ diff --git a/docs/figs/stewart_examples/stewart_kim00.jpg b/docs/figs/stewart_examples/stewart_kim00.jpg new file mode 100644 index 0000000..15ac6b4 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_kim00.jpg differ diff --git a/docs/figs/stewart_examples/stewart_mais.jpg b/docs/figs/stewart_examples/stewart_mais.jpg new file mode 100644 index 0000000..60ece3d Binary files /dev/null and b/docs/figs/stewart_examples/stewart_mais.jpg differ diff --git a/docs/figs/stewart_examples/stewart_nanoscale.jpg b/docs/figs/stewart_examples/stewart_nanoscale.jpg new file mode 100644 index 0000000..8f1fb02 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_nanoscale.jpg differ diff --git a/docs/figs/stewart_examples/stewart_naval.jpg b/docs/figs/stewart_examples/stewart_naval.jpg new file mode 100644 index 0000000..f06bb35 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_naval.jpg differ diff --git a/docs/figs/stewart_examples/stewart_naves.jpg b/docs/figs/stewart_examples/stewart_naves.jpg new file mode 100644 index 0000000..4bb0a9d Binary files /dev/null and b/docs/figs/stewart_examples/stewart_naves.jpg differ diff --git a/docs/figs/stewart_examples/stewart_pph.jpg b/docs/figs/stewart_examples/stewart_pph.jpg new file mode 100644 index 0000000..423f1d4 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_pph.jpg differ diff --git a/docs/figs/stewart_examples/stewart_satra.jpg b/docs/figs/stewart_examples/stewart_satra.jpg new file mode 100644 index 0000000..74f12f5 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_satra.jpg differ diff --git a/docs/figs/stewart_examples/stewart_su04.jpg b/docs/figs/stewart_examples/stewart_su04.jpg new file mode 100644 index 0000000..fe23588 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_su04.jpg differ diff --git a/docs/figs/stewart_examples/stewart_tang18.jpg b/docs/figs/stewart_examples/stewart_tang18.jpg new file mode 100644 index 0000000..5c96ec5 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_tang18.jpg differ diff --git a/docs/figs/stewart_examples/stewart_ting07.jpg b/docs/figs/stewart_examples/stewart_ting07.jpg new file mode 100644 index 0000000..80306f0 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_ting07.jpg differ diff --git a/docs/figs/stewart_examples/stewart_torii.jpg b/docs/figs/stewart_examples/stewart_torii.jpg new file mode 100644 index 0000000..33d2c73 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_torii.jpg differ diff --git a/docs/figs/stewart_examples/stewart_ulb_pz.jpg b/docs/figs/stewart_examples/stewart_ulb_pz.jpg new file mode 100644 index 0000000..1ff5b0d Binary files /dev/null and b/docs/figs/stewart_examples/stewart_ulb_pz.jpg differ diff --git a/docs/figs/stewart_examples/stewart_ulb_vc.jpg b/docs/figs/stewart_examples/stewart_ulb_vc.jpg new file mode 100644 index 0000000..0814adb Binary files /dev/null and b/docs/figs/stewart_examples/stewart_ulb_vc.jpg differ diff --git a/docs/figs/stewart_examples/stewart_uqp.jpg b/docs/figs/stewart_examples/stewart_uqp.jpg new file mode 100644 index 0000000..94b04e4 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_uqp.jpg differ diff --git a/docs/figs/stewart_examples/stewart_uw_gsp.jpg b/docs/figs/stewart_examples/stewart_uw_gsp.jpg new file mode 100644 index 0000000..dfde30d Binary files /dev/null and b/docs/figs/stewart_examples/stewart_uw_gsp.jpg differ diff --git a/docs/figs/stewart_examples/stewart_wang16.jpg b/docs/figs/stewart_examples/stewart_wang16.jpg new file mode 100644 index 0000000..d995996 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_wang16.jpg differ diff --git a/docs/figs/stewart_examples/stewart_yang19.jpg b/docs/figs/stewart_examples/stewart_yang19.jpg new file mode 100644 index 0000000..221f0f8 Binary files /dev/null and b/docs/figs/stewart_examples/stewart_yang19.jpg differ diff --git a/docs/figs/stewart_examples/stewart_zhang11.jpg b/docs/figs/stewart_examples/stewart_zhang11.jpg new file mode 100644 index 0000000..4ed939a Binary files /dev/null and b/docs/figs/stewart_examples/stewart_zhang11.jpg differ