diff --git a/docs/bibliography.html b/docs/bibliography.html index e3df8d0..634c7f2 100644 --- a/docs/bibliography.html +++ b/docs/bibliography.html @@ -3,11 +3,11 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- ++Actuators:
+Joints: +
++Sensors: +
+Link to bibliography | -Read | -
---|---|
(Merlet 2006) | -- |
(Taghirad 2013) | -X | -
(Preumont 2018) | -- |
(Arakelian 2018) | -- |
Link to bibliography | -Read | -
---|---|
(Li 2001) | -X | -
(Hanieh 2003) | -X | -
(Vivas 2004) | -- |
(Deng 2017) | -- |
Link to bibliography | -Read | -
---|---|
(Dasgupta and Mruthyunjaya 2000) | -X | -
(Merlet 2002) | -- |
(Patel and George 2012) | -- |
(Buzurovic 2012) | -- |
(Furqan, Suhaib, and Ahmad 2017) | -X | -
Link to bibliography | -Main Object | -
---|---|
(Liu et al. 2001) | -- |
(Tsai and Huang 2003) | -- |
(Yang et al. 2004) | -- |
(Anderson et al. 2006) | -- |
(Pernkopf and Husty 2006) | -Reachable Workspace | -
(Mukherjee, Dasgupta, and Mallik 2007) | -- |
(Jiang and Gosselin 2009a) | -Determination of the max. singularity free workspace | -
(Jiang and Gosselin 2009b) | -Orientation Workspace | -
(Jin, Chen, and Yang 2009) | -- |
(Legnani et al. 2012) | -- |
(Li et al. 2018) | -- |
Link to bibliography | -Read | -Built | -Application | +University | +Figure | Configuration | Joints | Actuators | Sensors | +Application | +Link to bibliography | +
---|---|---|---|---|---|---|---|---|---|---|---|
JPL | +fig:stewart_jpl | +Cubic | +Flexible | +Voice Coil (0.5 mm) | +Force (collocated) | ++ | spanos95_soft_activ_vibrat_isolat, rahman98_multiax Vibration Isolation (Space) | +||||
Washinton, JPL | +fig:stewart_ht_uw | +Cubic | +Elastomers | +Voice Coil (10 mm) | +Force, LVDT, Geophones | +Isolation + Pointing (Space) | +thayer98_stewar, thayer02_six_axis_vibrat_isolat_system, hauge04_sensor_contr_space_based_six | +||||
Wyoming | +fig:stewart_uw_gsp | +Cubic (CoM=CoK) | +Flexible | +Voice Coil | +Force | ++ | mcinroy99_dynam, mcinroy99_precis_fault_toler_point_using_stewar_platf, mcinroy00_desig_contr_flexur_joint_hexap, li01_simul_vibrat_isolat_point_contr, jafari03_orthog_gough_stewar_platf_microm | +||||
Brussels | +fig:stewart_ulb_vc | +Cubic | +Flexible | +Voice Coil | +Force | +Vibration Isolation | +hanieh03_activ_stewar, preumont07_six_axis_singl_stage_activ | +||||
SRDC | +fig:stewart_naval | +Not Cubic | +Ball joints | +Voice Coil (10 mm) | ++ | + | taranti01_effic_algor_vibrat_suppr | +||||
SRDC | +fig:stewart_pph | +Non-Cubic | +Flexible | +Voice Coil | +Accelerometers, External metrology: Eddy Current + optical | +Pointing | +chen03_payload_point_activ_vibrat_isolat | +||||
Harbin (China) | +fig:stewart_tang18 | +Cubic | +Flexible | +Voice Coil | +Accelerometer in each leg | ++ | chi15_desig_exper_study_vcm_based, tang18_decen_vibrat_contr_voice_coil, jiao18_dynam_model_exper_analy_stewar | +||||
Einhoven | +fig:stewart_beijen | +Almost cubic | +Flexible | +Voice Coil | +Force Sensor + Accelerometer | +Vibration Isolation | +beijen18_self_tunin_mimo_distur_feedf, tjepkema12_activ_ph | +||||
JPL | +fig:stewart_geng | +Cubic (6-UPU) | +Flexible | +Magnetostrictive | +Force (collocated), Accelerometers | +Vibration Isolation | +geng93_six_degree_of_freed_activ, geng94_six_degree_of_freed_activ, geng95_intel_contr_system_multip_degree | +||||
China | +fig:stewart_zhang11 | +Non-cubic | +Flexible | +Magnetostrictive | +Inertial | ++ | zhang11_six_dof | +||||
Brussels | +fig:stewart_ulb_pz | +Cubic | +Flexible | +Piezoelectric, Amplified | +Piezo Force | +Active Damping | +abu02_stiff_soft_stewar_platf_activ | +||||
SRDC | +fig:stewart_uqp | +Cubic | ++ | Piezoelectric (50 um) | +Geophone | +Vibration | +agrawal04_algor_activ_vibrat_isolat_spacec | +||||
Taiwan | +fig:stewart_nanoscale | +Cubic | +Flexible | +Piezoelectric (120 um) | +External capacitive | ++ | ting06_desig_stewar_nanos_platf, ting13_compos_contr_desig_stewar_nanos_platf | +||||
Taiwan | +fig:stewart_ting07 | +Non-Cubic | +Flexible | +Piezoelectric (160 um) | +External capacitive (LION) | ++ | ting07_measur_calib_stewar_microm_system | +||||
Harbin (China) | +fig:stewart_du14 | +6-SPS (Optimized) | +Flexible | +Piezoelectric | +Strain Gauge | ++ | du14_piezo_actuat_high_precis_flexib | +||||
Japan | +fig:stewart_furutani | +Non-Cubic | +Flexible | +Piezoelectric (16 um) | +Eddy Current Displacement Sensors | +Cutting machine | +furutani04_nanom_cuttin_machin_using_stewar | +||||
China | +fig:stewart_yang19 | +6-UPS (Cubic?) | +Flexible | +Piezoelectric | +Force, Position | ++ | yang19_dynam_model_decoup_contr_flexib | +||||
Shangai | +fig:stewart_wang16 | +Cubic | +Flexible | +Piezoelectric | +Force Sensor + Accelerometer | ++ | wang16_inves_activ_vibrat_isolat_stewar | +||||
Matra (France) | +fig:stewart_mais | +Cubic | +Flexible | +Piezoelectric (25 um) | +Piezo force sensors | +Vibration control | +defendini00_techn | +||||
Japan | +fig:stewart_torii | +Non-Cubic | +Flexible | +Inchworm | ++ | + | torii12_small_size_self_propel_stewar_platf | +||||
Netherlands | +fig:stewart_naves | +Non-Cubic | +Flexible | +3-phase rotary motor | +Rotary Encoders | ++ | &naves20_desig;&naves20_t_flex | +
+
+Figure 1: T-flex &naves20_desig
++
+Figure 2: &taranti01_effic_algor_vibrat_suppr
++
+Figure 3: &defendini00_techn
++
+Figure 4: &geng94_six_degree_of_freed_activ
++
+Figure 5: &spanos95_soft_activ_vibrat_isolat
++
+ ++
+ ++
+Figure 8: &wang16_inves_activ_vibrat_isolat_stewar
++
+Figure 9: &beijen18_self_tunin_mimo_distur_feedf
++
+Figure 10: &zhang11_six_dof
++
+Figure 11: &yang19_dynam_model_decoup_contr_flexib
++
+Figure 12: &du14_piezo_actuat_high_precis_flexib
++
+Figure 13: &tang18_decen_vibrat_contr_voice_coil
++
+Figure 14: &ting06_desig_stewar_nanos_platf
++
+Figure 15: &ting07_measur_calib_stewar_microm_system
++
+Figure 16: Hood Technology Corporation (HT) and the University of Washington (UW) have designed and tested a unique hexapod design for spaceborne interferometry missions &thayer02_six_axis_vibrat_isolat_system
++
+Figure 17: UW GSP: Mutually Orthogonal Stewart Geometry &li01_simul_fault_vibrat_isolat_point
++
+Figure 18: Precision Pointing Hexapod (PPH) &chen03_payload_point_activ_vibrat_isolat
++
+Figure 19: Ultra Quiet Platform (UQP) &agrawal04_algor_activ_vibrat_isolat_spacec
++
+Figure 20: ULB - Piezoelectric &abu02_stiff_soft_stewar_platf_activ
++
+Figure 21: ULB - Voice Coil &hanieh03_activ_stewar
+University | +Figure | +Configuration | +Joints | +Actuators | +Sensors | +Link to bibliography | +
---|---|---|---|---|---|---|
Japan | +fig:stewart_cleary | +6-UPS | +Conventional | +DC, gear + rack pinion | +Encoder, 7um res | +cleary91_protot_paral_manip | +
Seoul | +fig:stewart_kim00 | +Non-Cubic | +Conventional | +Hydraulic | +LVDT | +kim00_robus_track_contr_desig_dof_paral_manip | +
Xidian (China) | +fig:stewart_su04 | +Non-Cubic | +Conventional | +Servo Motor + Screwball | +Encoder | +su04_distur_rejec_high_precis_motion | +
Czech | +fig:stewart_czech | +6-UPS | +Conventional | +DC, Ball Screw | +Absolute Linear position | +brezina08_ni_labview_matlab_simmec_stewar_platf_desig, houska10_desig_implem_absol_linear_posit, brezina10_contr_desig_stewar_platf_linear_actuat | +
+
+Figure 22: &cleary91_protot_paral_manip
++
+Figure 23: &kim01_six
++
+Figure 24: &su04_distur_rejec_high_precis_motion
++
+Figure 25: Stewart platform from Brno University (Czech) &brezina08_ni_labview_matlab_simmec_stewar_platf_desig
++From &hauge04_sensor_contr_space_based_six: +
+++ ++Elastomer flexures, rather than steel, reduce lateral stiffness and improve passive performance at payload resonance (damping) and at frequencies greater than 100 Hz. +
+
Main Object | +Link to bibliography | +
---|---|
Effect of flexures | +mcinroy02_model_desig_flexur_joint_stewar | +
Main Object | +Link to bibliography | +
---|---|
Geometry for decoupling (CoM, CoK) | +mcinroy00_desig_contr_flexur_joint_hexap | +
+ | afzali-far16_vibrat_dynam_isotr_hexap_analy_studies | +
Figure | +Link to bibliography | +
---|---|
fig:stewart_dong07 | +dong08_stiff_resear_high_precis_large, dong07_desig_precis_compl_paral_posit | +
+ | kim09_desig_model_novel_precis_micro_stage | +
+ | yun10_desig_analy_novel_redun_actuat | +
+ | gao02_necw_kinem_struc_paral_manip_desig | +
+ | horin06_singul_condit_six_degree_of | +
+
+Figure 26: &dong07_desig_precis_compl_paral_posit
+Main Object | +Link to bibliography | +
---|---|
Compute orientation | +bonev01_new_approac_to_orien_works | +
Reachable Workspace | +pernkopf06_works_analy_stewar_gough_type_paral_manip | +
Determination of the max. singularity free workspace | +jiang09_deter_maxim_singul_free_orien | +
Orientation Workspace | +jiang09_evaluat_repres_theor_orien_works | +
+Different control objectives: +
++Sometimes, the two objectives are simultaneous, in that case multiple sensors needs to be combined in the control architecture (Section sec:control_multi_sensor). +
+ ++Stewart platform, being 6DoF parallel mechanisms, have a coupled dynamics. +In order to ease the control design, decoupling is generally required. +Several approaches can be used (Section sec:control_decoupling). +
++From &hauge04_sensor_contr_space_based_six: +
++++In general, force sensors such as load cells, work well to measure vibration, but have difficulty with cross-axis dynamics. +Inertial sensors, on the other hand, do not have this cross-axis limitation, but are usually more sensitive to payload and base dynamics and are more difficult to control due to the non-collocated nature of the sensor and actuator. +Force sensors typically work well because they are not as sensitive to payload and base dynamics, but are limited in performance by a low-frequency zero pair resulting from the cross-axial stiffness. +This zero pair has confused many researchers because it is very sensitive, occasionally becoming non-minimum phase. +The zero pair is the current limitation in performance using load cell sensors. +
+
University | +Actuators | +Sensors | +Control | +Main Object | +Link to bibliography | +
---|---|---|---|---|---|
JPL | +Magnetostrictive | +Force (collocated), Accelerometers | +Two layers: Decentralized IFF, Robust Adaptive Control | +Two layer control for active damping and vibration isolation | +geng95_intel_contr_system_multip_degree | +
JPL | +Voice Coil | +Force (collocated) | +Decentralized IFF | +Decentralized force feedback to reduce the transmissibility | +spanos95_soft_activ_vibrat_isolat, rahman98_multiax | +
Washinton | +Voice Coil | +Force, LVDT, Geophones | +LQG, Force + geophones for vibration, LVDT for pointing | +Centralized control is no better than decentralized. Geophone + Force MISO control is good | +thayer98_stewar, thayer02_six_axis_vibrat_isolat_system | +
Wyoming | +Voice Coil | +Force | +Centralized (cartesian) IFF | +Difficult to decouple in practice | +obrien98_lesson | +
Wyoming | +Voice Coil | +Force | +IFF, centralized (decouple) + decentralized (coupled) | +Specific geometry: decoupled force plant. Better perf with centralized IFF | +mcinroy99_dynam, mcinroy99_precis_fault_toler_point_using_stewar_platf, mcinroy00_desig_contr_flexur_joint_hexap | +
Brussels | +APA | +Piezo force sensor | +Decentralized IFF | ++ | abu02_stiff_soft_stewar_platf_activ | +
Brussels | +Voice Coil | +Force Sensor | +Decentralized IFF | +Effect of flexible joints | +preumont07_six_axis_singl_stage_activ | +
Shangai | +Piezoelectric | +Force Sensor + Accelerometer | +Vibration isolation, HAC-LAC (IFF + FxLMS) | +Dynamic Model + Vibration Control | +wang16_inves_activ_vibrat_isolat_stewar | +
China | ++ | + | Decentralized IFF | +Design cubic configuration to have same modal frequencies: optimal damping of all modes | +yang17_dynam_isotr_desig_decen_activ | +
Washinton | +Voice Coil | +Force | +Decentralized IFF | +Comparison of force sensor and inertial sensors. Issue on non-minimum phase zero | +hauge04_sensor_contr_space_based_six | +
China | +Piezoelectric | +Force, Position | +Vibration isolation, Model-Based, Modal control: 6x PI controllers | +Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space | +yang19_dynam_model_decoup_contr_flexib | +
University | +Actuators | +Sensors | +Control | +Main Object | +Link to bibliography | +
---|---|---|---|---|---|
Wyoming | +Voice Coil | +Accelerometer (collocated), ext. Rx/Ry sensors | +Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) | +Decoupling, both vibration + pointing control | +li01_simul_vibrat_isolat_point_contr | +
China | +Voice Coil | +Geophone + Eddy Current (Struts, collocated) | +Decentralized (Sky Hook) + Centralized (modal) Control | ++ | pu11_six_degree_of_freed_activ | +
China | +Voice Coil | +Accelerometer in each leg | +Centralized Vibration Control, PI, Skyhook | ++ | abbas14_vibrat_stewar_platf | +
Einhoven | +Voice Coil | +6dof Accelerometers on mobile and fixed platforms | +Self learning feedforward (FIR), Centralized MIMO feedback (sky hood damping) | ++ | beijen18_self_tunin_mimo_distur_feedf | +
Harbin (China) | +Voice Coil | +Accelerometer in each leg | +Decentralized vibration control | +Vibration Control with VCM and Decentralized control | +tang18_decen_vibrat_contr_voice_coil | +
Washinton | +Voice Coil | +Geophones | +Decentralized Inertial Feedback | +Centralized control is no better than decentralized. Geophone + Force MISO control is good | +thayer02_six_axis_vibrat_isolat_system | +
Washinton | +Voice Coil | +Geophones | +Decentralized Sky Hood Damping | +Comparison of force sensor and inertial sensors | +hauge04_sensor_contr_space_based_six | +
Harbin (China) | +Voice Coil | +Accelerometers | +MIMO H-Infinity, active damping | +Model + active damping with flexible hinges | +jiao18_dynam_model_exper_analy_stewar | +
University | +Actuators | +Sensors | +Control | +Main Object | +Link to bibliography | +
---|---|---|---|---|---|
JPL | +Magnetostrictive | +Force, Accelerometers | +Robust Adaptive Filter | +Hardware implementation | +geng93_six_degree_of_freed_activ, geng94_six_degree_of_freed_activ | +
SRDC | ++ | + | LMS with FIR (feedforward), disturbance rejection, Decentralized (struts) PID | +Rejection of narrowband periodic disturbances | +chen03_payload_point_activ_vibrat_isolat | +
Wyoming | +Voice Coil | ++ | Adaptive sinusoidal disturbance (Phase Lock Loop) | ++ | lin03_adapt_sinus_distur_cancel_precis | +
SRDC | +Piezo | +Geophone (collocated) | +“multiple error LMS” (require measured disturbance) vs “clear box” | ++ | agrawal04_algor_activ_vibrat_isolat_spacec | +
China | +Magnetostrictive | +Inertial | +Sinusoidal vibration, adaptive filters (LMS) | +Design and Control of flexure joint Hexapods | +zhang11_six_dof | +
Shangai | +Piezoelectric | +Force Sensor + Accelerometer | +Vibration isolation, HAC-LAC (IFF + FxLMS) | +Dynamic Model + Vibration Control | +wang16_inves_activ_vibrat_isolat_stewar | +
+Here, the objective is to position the mobile platform with respect to an external metrology or internal metrology. +
+ ++Control Strategy: +
+University | +Actuators | +Sensors | Control | Modelling | Main Object | +Link to bibliography | |||
---|---|---|---|---|---|---|---|---|---|
(Cleary and Arai 1991) | -1 | -X | +Washinton | +Voice Coil | +Force, LVDT, Geophones | +LQG, Force + geophones for vibration, LVDT for pointing | +FEM => State Space | +Centralized control is no better than decentralized. Geophone + Force MISO control is good | +thayer98_stewar, thayer02_six_axis_vibrat_isolat_system | +
Wyoming | +Voice Coil | +Force, LVDT | +IFF, centralized (decouple) + decentralized (coupled) | +Lumped | +Specific geometry: decoupled force plant. Better perf with centralized IFF | +mcinroy99_dynam, mcinroy99_precis_fault_toler_point_using_stewar_platf, mcinroy00_desig_contr_flexur_joint_hexap | +|||
Seoul | +Hydraulic | +LVDT | +Decentralized (strut) vs Centralized (cartesian) | - | 6-UPS | -Conventional | -DC | ++ | kim00_robus_track_contr_desig_dof_paral_manip | +
Wyoming | +Voice Coil | +Accelerometer (collocated), ext. Rx/Ry sensors | +Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) | +Analytical equations | +Decoupling, both vibration + pointing control | +li01_simul_vibrat_isolat_point_contr | +|||
Japan | +APA | +Eddy current displacement | +Decentralized (struts) PI + LPF control | ++ | + | furutani04_nanom_cuttin_machin_using_stewar | +|||
China | +Voice Coil | +Geophone + Eddy Current (Struts, collocated) | +Decentralized (Sky Hook) + Centralized (modal) Control | ++ | + | pu11_six_degree_of_freed_activ | +|||
Harbin (China) | +PZT Piezo | +Strain Gauge | +Decentralized position feedback | ++ | Workspace, Stiffness analyzed | +du14_piezo_actuat_high_precis_flexib | +|||
China | +Piezoelectric | Leg length | +Tracking control, ADRC, State observer | +Analytical | +Use of ADRC for tracking control of cubic hexapod | +min19_high_precis_track_cubic_stewar | +|||
China | +Piezoelectric | +Force, Position | +Vibration isolation, Model-Based, Modal control: 6x PI controllers | +Solid/Flexible | +Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space | +yang19_dynam_model_decoup_contr_flexib | +
+From: yang19_dynam_model_decoup_contr_flexib: +
++++On the other hand, the traditional modal decoupled control strategy cannot deal with the flexible Stewart platform governed by Eq. (34) because it is impossible to achieve simultaneous diagonalization of the mass, damping and stiffness matrices. +To make the six-DOF system decoupled into six single-DOF isolators, we design a new controller based on the leg’s force and position feedback. +The idea is to synthesize the control force that can compensate the parasitic bending and torsional torques of the flexible joints and simultaneously achieve diagonalization of the matrices M, C and K. +
+
+Improvement by the use of several sensors: +
++Comparison between “two sensor control” and “sensor fusion” is given in &beijen14_two_sensor_contr_activ_vibrat. +
+University | +Actuators | +Sensors | +Control | +Main Object | +Link to bibliography | +
---|---|---|---|---|---|
Washinton | +Voice Coil | +Force and Inertial | +LQG, Decentralized, Sensor Fusion | +Combine force/inertial sensors. Comparison of force sensor and inertial sensors. Issue on non-minimum phase zero | +hauge04_sensor_contr_space_based_six | +
Netherlands | +Voice Coil | + | Sensor Fusion, Two Sensor Control | + | tjepkema12_activ_ph | +
University | +Actuators | +Sensors | +Control | +Main Object | +Link to bibliography | +
---|---|---|---|---|---|
JPL | +Magnetostrictive | +Force (collocated), Accelerometers | +Two layers: Decentralized IFF, Robust Adaptive Control | +Two layer control for active damping and vibration isolation | +geng95_intel_contr_system_multip_degree | +
Shangai | +Piezoelectric | +Force Sensor + Accelerometer | +Vibration isolation, HAC-LAC (IFF + FxLMS) | +Dynamic Model + Vibration Control | +wang16_inves_activ_vibrat_isolat_stewar | +
Wyoming | +Voice Coil | +Accelerometer (collocated), ext. Rx/Ry sensors | +Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) | +Decoupling, both vibration + pointing control | +li01_simul_vibrat_isolat_point_contr | +
China | +Voice Coil | +Geophone + Eddy Current (Struts, collocated) | +Decentralized (Sky Hook) + Centralized (modal) Control | ++ | pu11_six_degree_of_freed_activ | +
China | +Voice Coil | +Force sensors (strus) + accelerometer (cartesian) | +Decentralized Force Feedback + Centralized H2 control based on accelerometers | ++ | xie17_model_contr_hybrid_passiv_activ | +
University | +Actuators | +Sensors | +Control | +Main Object | +Link to bibliography | +
---|---|---|---|---|---|
Netherlands | +Voice Coil | +Force (HF) and Inertial (LF) | +Sensor Fusion, Two Sensor Control | ++ | tjepkema12_activ_ph, tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip | +
Washinton | +Voice Coil | +Force (HF) and Inertial (LF) | +LQG, Decentralized, Sensor Fusion | +Combine force/inertial sensors. Comparison of force sensor and inertial sensors. Issue on non-minimum phase zero | +hauge04_sensor_contr_space_based_six | +
University | +Actuators | +Sensors | +Control | +Main Object | +Link to bibliography | +
---|---|---|---|---|---|
China | +Piezoelectric | +Force, Position | +Vibration isolation, Model-Based, Modal control: 6x PI controllers | +Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space | +yang19_dynam_model_decoup_contr_flexib | +
Washinton | +Voice Coil | +Force, LVDT, Geophones | +LQG, Force + geophones for vibration, LVDT for pointing | +Centralized control is no better than decentralized. Geophone + Force MISO control is good | +thayer98_stewar, thayer02_six_axis_vibrat_isolat_system | +
Wyoming | +Voice Coil | +Force | +IFF, centralized (decouple) + decentralized (coupled) | +Specific geometry: decoupled force plant. Better perf with centralized IFF | +mcinroy99_dynam, mcinroy99_precis_fault_toler_point_using_stewar_platf, mcinroy00_desig_contr_flexur_joint_hexap | +
+Different strategies: +
++Identify Jacobian for better decoupling: cheng04_multi_body_system_model_gough, gexue04_vibrat_contr_with_stewar_paral_mechan. +
+ + +Japan | +APA | +Eddy current displacement | +Decentralized (struts) PI + LPF control | +furutani04_nanom_cuttin_machin_using_stewar | +
Harbin (China) | +PZT Piezo | +Strain Gauge | +Decentralized position feedback | +du14_piezo_actuat_high_precis_flexib | +
Wyoming | +Voice Coil | +Force | +Cartesian frame decoupling | +obrien98_lesson | +
Wyoming | +Voice Coil | +Force | +IFF, Cartesian Frame, Jacobians | +mcinroy99_dynam, mcinroy99_precis_fault_toler_point_using_stewar_platf, mcinroy00_desig_contr_flexur_joint_hexap | +
Seoul | +Hydraulic | +LVDT | +Decentralized (strut) vs Centralized (cartesian) | +kim00_robus_track_contr_desig_dof_paral_manip | +
Wyoming | +Voice Coil | +Accelerometer (collocated), ext. Rx/Ry sensors | +Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) | +li01_simul_vibrat_isolat_point_contr | +
China | +Voice Coil | +Accelerometer in each leg | +Centralized Vibration Control, PI, Skyhook | +abbas14_vibrat_stewar_platf | +
China | +Voice Coil | +Geophone + Eddy Current (Struts, collocated) | +Decentralized (Sky Hook) + Centralized (modal) Control | +pu11_six_degree_of_freed_activ | +
China | +Piezoelectric | +Force, Position | +Vibration isolation, Model-Based, Modal control: 6x PI controllers | +yang19_dynam_model_decoup_contr_flexib | +
+From &thayer02_six_axis_vibrat_isolat_system: +
+++ + ++Experimental closed-loopcontrol results using the hexapod have shown that controllers designed using a decentralized single-strut design work well when compared to full multivariable methodologies. +
+
China | +PZT | +Geophone (struts) | +H-Infinity and mu-synthesis | +lei08_multi_objec_robus_activ_vibrat | +
China | +Voice Coil | +Force sensors (strus) + accelerometer (cartesian) | +Decentralized Force Feedback + Centralized H2 control based on accelerometers | +xie17_model_contr_hybrid_passiv_activ | +
Harbin (China) | +Voice Coil | +Accelerometers | +MIMO H-Infinity, active damping | +jiao18_dynam_model_exper_analy_stewar | +
Link to bibliography | +University | +Actuators | +Sensors | +Control | +Main Object | +||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cleary91_protot_paral_manip | +Japan | +DC, gear + rack pinion | +Encoder, 7um res | +Decentralized (struts), PID control | Singular configuration analysis, workspace | ||||||||||
(Geng and Haynes 1993), (Geng and Haynes 1994) | -1 | -X | -Vibration Isolation | -Cubic (6-UPU) | -Flexible | -Magnetostrictive | -Force, Accelerometers | -Robust Adaptative Filter | -Linear Model | -Hardware implementation | -|||||
(Geng et al. 1995) | -- | X | -Vibration Isolation | -Cubic | -Flexible | -Magnetostrictive | -Force, Accelerometers | -Two layers: Decentralized Force Feedback, Robust Adaptative Control | -Linear Model | -Two layer control for active damping and vibration isolation | -|||||
(Spanos, Rahman, and Blackwood 1995) | -- | X | -Vibration Isolation (Space) | -Cubic | -Flexible | -Voice Coil | -Force | -Decentralized Force Feedback | -- | Decentralized force feedback to reduce the transmissibility | -|||||
(Thayer and Vagners 1998), (Thayer et al. 2002) | -- | X | -- | Cubic | -- | Voice Coil | -Force, LVDT, Geophones | -LQG | -FEM => State Space | -- | |||||
(O’Brien et al. 1998) | -- | - | - | - | - | + | su04_distur_rejec_high_precis_motion | +Xidian (China) | @@ -384,13 +1931,8 @@ Things to add: | ||||||
(McInroy, O’Brien, and Neat 1999) | -- | - | - | - | - | + | huang05_smoot_stewar | +Taiwan | @@ -398,433 +1940,17 @@ Things to add: | ||||||
(McInroy 1999) | -- | - | - | - | - | - | - | - | - | - | |||||
(McInroy and Hamann 2000) | -- | - | - | - | - | - | - | - | - | - | |||||
(Kim, Kang, and Lee 2000) | -- | - | - | - | - | - | - | - | - | - | |||||
(Chen and McInroy 2000) | -- | - | - | - | - | - | - | - | - | - | |||||
(Li, Hamann, and McInroy 2001) | -- | - | - | - | - | - | - | - | - | - | |||||
(Selig and Ding 2001) | -- | - | - | - | - | Spring-Dashpot Model | -- | Vibration | -Equations of motion, K, C | -Eigen-solutions of EoM | -|||||
(Bonev and Ryu 2001) | -- | - | - | - | - | - | - | - | - | Computes orientation workspace | -|||||
(Gao et al. 2002) | -- | - | - | - | - | - | - | - | - | New structure for Parallel Manipulator Designs | -|||||
(Chai, Young, and Tuersley 2002) | -- | - | - | - | - | - | - | - | - | - | |||||
(McInroy 2002) | -- | - | - | - | - | - | - | - | - | - | |||||
(Abu Hanieh, Horodinca, and Preumont 2002) | -- | - | - | - | - | - | - | - | - | - | |||||
(Jafari and McInroy 2003) | -- | - | - | - | - | - | - | - | - | - | |||||
(Chen, Bishop, and Agrawal 2003) | -- | - | - | - | - | - | - | - | - | - | |||||
(Lee et al. 2003) | -- | - | - | - | - | - | - | - | - | - | |||||
(Wang et al. 2003) | -- | - | - | - | Flexible | -- | - | - | - | - | |||||
(Lin and McInroy 2003) | -- | - | - | - | - | - | - | - | - | - | |||||
(Agrawal and Chen 2004) | -- | - | - | - | - | - | - | - | - | - | |||||
(Cheng, Ren, and Dai 2004), (Gexue et al. 2004) | -- | - | Vibration Isolation | -6-TPS | -- | - | Inertial | -Decentralized PD | -Multi-Body | -Control architectures for vibration control of Stewart platform on top of a flexible support | -|||||
(Hauge and Campbell 2004) | -- | X | -Vibration Isolation | -Cubic | -Flexible | -Voice Coil | -Force and Inertial | -LQG, Decentralized, Sensor Fusion | -Single axis | -Combine force/inertial sensors | -|||||
(Furutani, Suzuki, and Kudoh 2004) | -- | - | - | - | - | - | - | - | - | - | |||||
(Ranganath et al. 2004) | -- | - | - | - | - | - | - | - | - | - | |||||
(Chen and McInroy 2004) | -- | - | - | - | - | - | - | - | - | - | |||||
(Su et al. 2004) | -- | X | -- | - | - | - | - | - | - | - | |||||
(Huang and Fu 2005) | -- | - | - | - | - | - | - | - | - | - | |||||
(Ting, Jar, and Li 2006), (Ting, Li, and Nguyen 2013) | -- | X | -- | - | - | - | - | - | - | - | |||||
(Horin and Shoham 2006) | -- | - | - | - | - | - | - | - | - | - | |||||
(Preumont et al. 2007) | -- | - | - | - | - | - | - | - | - | - | |||||
(Ting, Jar, and Li 2007) | -- | - | - | - | - | - | - | - | - | - | |||||
(Lei and Benli 2008) | -- | - | - | - | Flexible | -Piezoelectric | -- | H-Infinity and mu-synthesis | -- | - | |||||
(Bvrezina, Andrvs, and Bvrezina 2008) | -- | - | - | - | + | brezina08_ni_labview_matlab_simmec_stewar_platf_desig, houska10_desig_implem_absol_linear_posit | +Czech | DC | - | Multi-Body - Sim mechanics | Modeling with sim-mechanics | ||||
(Molina, Rosario, and Sanchez 2008) | -- | - | - | - | - | + | molina08_simul_stewar | +Brazil | @@ -832,589 +1958,81 @@ Things to add: | ||||||
(Dong, Sun, and Du 2008), (Dong, Sun, and Du 2007) | -- | - | - | - | - | - | - | - | - | - | |||||
(Heertjes, Engelen, and Steinbuch 2010) | -- | - | - | - | - | - | - | - | - | - | |||||
(Neagoe et al. 2010) | -- | - | - | - | - | - | - | - | - | - | |||||
(Beno, Booth, and Mock 2010) | -- | - | - | - | - | - | - | - | - | - | |||||
(Yang et al. 2010) | -- | - | - | - | + | yang10_model_dof_simul_simmec | +China | Decentralized PID | -Simulation with Simulink/SimMechanics | ||||||
(Bvrezina and Bvrezina 2010) | -- | - | - | 6-UPS | -- | DC | -- | - | - | State Space control with torque observer | -|||||
(Houvska, Bvrezina, and Bvrezina 2010) | -- | X | -- | - | Conventional | -DC | -Absolute Linear position | -- | - | Design and Implementation of linear position sensor for a ball screw actuator | -|||||
(Bvrezina and Bvrezina 2010) | -- | - | - | 6-UPS | -- | DC Ball Screw | -- | Two layers: torque control + DC synchronization | -Sim mechanics | -Controller design using a torque observer | -|||||
(Zhang et al. 2011) | -- | X | -- | Non-cubic | -Flexible | -Magnetostrictive | -Inertial | -Vibration, adaptive filters | -- | Design and Control of flexure joint Hexapods | -|||||
(Yun and Li 2011) | -- | - | - | - | - | - | - | - | - | - | |||||
(Pu et al. 2011) | -- | - | - | - | - | - | - | - | - | - | |||||
(Ding, Damen, and Bosch 2011) | -- | - | - | - | - | - | - | - | - | - | |||||
(Torii et al. 2012) | -- | X | -- | - | Flexible | -Inchworm | -- | - | - | - | |||||
(Pedrammehr, Mahboubkhah, and Khani 2012) | -- | X | -- | 6-UPS | -- | - | - | - | Analytical, FEM | -Variations of K with the pose | -|||||
(Xu and Weng 2013) | -- | - | - | - | - | - | - | - | - | - | |||||
(Baig and Pugazhenthi 2014) | -- | X | -- | - | - | - | - | Vibration isolation | -Matlab/Simulink | -Parameter optimization based on Transmissibility | -|||||
(Du, Shi, and Dong 2014) | -- | X | -- | 6-SPS (Optimized) | -Flexible | -PZT Piezo | -Strain Gauge | -Pointing | -- | Workspace, Stiffness analyzed | -|||||
(Abbas and Hai 2014) | -- | - | - | Non-cubic | -- | Voice Coil | -Accelerometer in each leg | -Centralized Vibration Control, PI, Skyhook | -- | - | |||||
(Lara-Molina, Koroishi, and Dumur 2015) | -- | - | - | - | - | - | - | - | - | Optimal Design, Sensitivity Analysis | -|||||
(Thier et al. 2016) | -- | - | - | - | - | - | - | - | - | - | |||||
(Wang et al. 2016) | -- | X | -- | Cubic | -Flexible | -Piezoelectric | -Force Sensor + Accelerometer | -Vibration isolation, HAC-LAC (IFF + FxLMS) | -Flexible Elements (FRF) | -Dynamic Model + Vibration Control | -|||||
(Yang et al. 2017) | -- | - | - | - | - | - | - | - | - | - | |||||
(Beijen, Heertjes, et al. 2018) | -- | - | - | - | - | - | - | - | - | - | |||||
(Jiao et al. 2018) | -- | X | -- | - | Flexible | -Voice Coil | -Accelerometers | -MIMO H-Infinity, active damping | -Analytical | -Model + active damping with flexible hinges | -|||||
(Tang, Cao, and Yu 2018) | -- | X | -- | Cubic | -- | Voice Coil | -Accelerometer in each leg | -Decentralized vibration control | -- | Vibration Control with VCM and Decentralized control | -|||||
(Taghavi, Kinoshita, and Bock 2019) | -- | - | - | 6-SCS | -Conventional | -- | -- | -Passive Damping | -Matlab/Simscape | -6dof passive damper | -|||||
(Owoc, Ludwiczak, and Piotrowski 2019) | -- | - | - | - | - | Rotary | -- | PID | -- | Low cost Stewart-Platform | -|||||
(Min, Huang, and Su 2019) | -- | - | - | Cubic | -- | Piezoelectric | -Leg length | -Tracking control, ADRC, State observer | -Analytical | -Use of ADRC for tracking control of cubic hexapod | -|||||
(Yang et al. 2019) | -1 | -X | -- | 6-UPS (Cubic?) | -Flexible | -Piezoelectric | -Force, Position | -Vibration isolation, Model-Based, Modal control | -Solid/Flexible | -Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space | -|||||
(Stabile et al. 2019) | -- | - | - | - | - | - | - | - | - | - | |||||
(Tong, Gosselin, and Jiang 2020) | -- | - | - | - | - | - | - | - | + | kim00_robus_track_contr_desig_dof_paral_manip | +Seoul | +Hydraulic | +LVDT | +Decentralized (strut) vs Centralized (cartesian) |
Link to bibliography | -
---|
(Kim and Cho 2009) | -
(Yun and Li 2010) | -
Created: 2021-01-08 ven. 15:30
+Created: 2024-09-25 Wed 15:17