#+TITLE: Compute Spectral Densities of signals with Matlab :DRAWER: #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/MEGA/These/LaTeX/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results raw replace :buffer no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports both #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :tangle filters.m #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs :END: This document presents the mathematics as well as the matlab scripts to do the spectral analysis of a measured signal. Typically this signal is coming from an inertial sensor, a force sensor or any other sensor. We here take the example of a signal coming from a Geophone measurement the vertical velocity of the floor at the ESRF. * Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src * Sensitivity of the instrumentation The measured signal $x$ by the ADC is in Volts. The corresponding real velocity $v$ in m/s. To obtain the real quantity as measured by the sensor, one have to know the sensitivity of the sensors and electronics used. #+begin_src latex :file velocity_to_voltage.pdf :post pdf2svg(file=*this*, ext="png") :exports results \begin{tikzpicture} \node[block] (geophone) at (0, 0) {$G_g(s)$}; \node[above] at (geophone.north) {Geophone}; \node[block, right=1 of geophone] (ampli) {$G_a(s)$}; \node[above] at (ampli.north) {Amplifier}; \node[ADC, right=1 of ampli] (adc) {ADC}; \draw[double, <-] (geophone.west) -- node[midway, above]{$v$ [m/s]} ++(-1.4, 0); \draw[->] (geophone.east) -- node[midway, above]{[V]} (ampli.west); \draw[->] (ampli.east) -- node[midway, above]{[V]} (adc.west); \draw[->] (adc.east) -- node[sloped]{$/$}node[midway, above]{$x$ [V]} ++(1.4, 0); \end{tikzpicture} #+end_src #+NAME: fig:velocity_to_voltage #+CAPTION: Schematic of the instrumentation used for the measurement #+RESULTS: fig:velocity_to_voltage [[file:figs/velocity_to_voltage.png]] * Convert the time domain from volts to velocity Let's say, we know that the sensitivity of the geophone used is \[ G_g(s) = G_0 \frac{\frac{s}{2\pi f_0}}{1 + \frac{s}{2\pi f_0}} \quad \left[\frac{V}{m/s}\right] \] #+begin_src matlab G0 = 88; % Sensitivity [V/(m/s)] f0 = 2; % Cut-off frequency [Hz] Gg = G0*(s/2/pi/f0)/(1+s/2/pi/f0); #+end_src And the gain of the amplifier is 1000: $G_m(s) = 1000$. #+begin_src matlab Gm = 1000; #+end_src If ${G_m(s)}^{-1} {G_g(s)}^{-1}$ is proper, we can simulate this dynamical system to go from the voltage to the velocity units (figure [[fig:voltage_to_velocity]]). #+begin_src matlab data = load('mat/data_028.mat', 'data'); data = data.data; t = data(:, 3); % [s] x = data(:, 1)-mean(data(:, 1)); % The offset if removed (coming from the voltage amplifier) [v] dt = t(2)-t(1); Fs = 1/dt; #+end_src #+begin_src latex :file voltage_to_velocity.pdf :post pdf2svg(file=*this*, ext="png") :exports results \begin{tikzpicture} \node[block] (ampli) at (0, 0) {${G_a(s)}^{-1}$}; \node[above] at (ampli.north) {Amplifier}; \node[block, right=1 of ampli] (geophone) {${G_g(s)}^{-1}$}; \node[above] at (geophone.north) {Geophone}; \draw[<-] (ampli.west) -- node[midway, above]{$x$ [V]}node[sloped]{$/$} ++(-1.4, 0); \draw[->] (ampli.east) -- node[midway, above]{[V]}node[sloped]{$/$} (geophone.west); \draw[->] (geophone.east) -- node[midway, above]{$v$ [m/s]}node[sloped]{$/$} ++(1.4, 0); \end{tikzpicture} #+end_src #+NAME: fig:voltage_to_velocity #+CAPTION: Schematic of the instrumentation used for the measurement #+RESULTS: fig:voltage_to_velocity [[file:figs/voltage_to_velocity.png]] We simulate this system with matlab: #+begin_src matlab v = lsim(inv(Gg*Gm), v, t); #+end_src And we plot the obtained velocity #+begin_src matlab figure; plot(t, v); xlabel("Time [s]"); ylabel("Velocity [m/s]"); #+end_src #+NAME: fig:velocity_time #+HEADER: :tangle no :exports results :results value raw replace :noweb yes #+begin_src matlab :var filepath="figs/velocity_time.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:velocity_time #+CAPTION: Measured Velocity #+RESULTS: fig:velocity_time [[file:figs/velocity_time.png]] * Power Spectral Density and Amplitude Spectral Density We now have the velocity in the time domain: \[ v(t)\ [m/s] \] To compute the Power Spectral Density (PSD): \[ S_v(f)\ \left[\frac{(m/s)^2}{Hz}\right] \] To compute that with matlab, we use the =pwelch= function. We first have to defined a window: #+begin_src matlab win = hanning(ceil(10*Fs)); % 10s window #+end_src #+begin_src matlab [Sv, f] = pwelch(v, win, [], [], Fs); #+end_src #+begin_src matlab figure; loglog(f, Sv); xlabel('Frequency [Hz]'); ylabel('Power Spectral Density $\left[\frac{(m/s)^2}{Hz}\right]$') #+end_src #+NAME: fig:psd_velocity #+HEADER: :tangle no :exports results :results value raw replace :noweb yes #+begin_src matlab :var filepath="figs/psd_velocity.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:psd_velocity #+CAPTION: Power Spectral Density of the measured velocity #+RESULTS: fig:psd_velocity The Amplitude Spectral Density (ASD) is the square root of the Power Spectral Density: \begin{equation} \Gamma_{vv}(f) = \sqrt{S_{vv}(f)} \quad \left[ \frac{m/s}{\sqrt{Hz}} \right] \end{equation} #+begin_src matlab figure; loglog(f, sqrt(Sv)); xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{m/s}{\sqrt{Hz}}\right]$') #+end_src #+NAME: fig:asd_velocity #+HEADER: :tangle no :exports results :results value raw replace :noweb yes #+begin_src matlab :var filepath="figs/asd_velocity.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:asd_velocity #+CAPTION: Power Spectral Density of the measured velocity #+RESULTS: fig:asd_velocity * Modification of a signal's Power Spectral Density when going through an LTI system #+begin_src latex :file velocity_to_voltage_psd.pdf :post pdf2svg(file=*this*, ext="png") :exports results \begin{tikzpicture} \node[block] (G) at (0, 0) {$G(s)$}; \draw[<-] (G.west) -- node[midway, above]{$x$} ++(-1.4, 0); \draw[->] (G.east) -- node[midway, above]{$y$} ++(1.4, 0); \end{tikzpicture} #+end_src #+NAME: fig:velocity_to_voltage_psd #+CAPTION: Schematic of the instrumentation used for the measurement #+RESULTS: fig:velocity_to_voltage_psd [[file:figs/velocity_to_voltage_psd.png]] We can show that: \begin{equation} S_{yy}(\omega) = \left|G(j\omega)\right|^2 S_{xx}(\omega) \end{equation} And we also have: \begin{equation} \Gamma_{yy}(\omega) = \left|G(j\omega)\right| \Gamma_{xx}(\omega) \end{equation} * From PSD of the velocity to the PSD of the displacement #+begin_src latex :file velocity_to_displacement_psd.pdf :post pdf2svg(file=*this*, ext="png") :exports results \begin{tikzpicture} \node[block] (G) at (0, 0) {$\frac{1}{s}$}; \draw[<-] (G.west) -- node[midway, above]{$v$} ++(-1, 0); \draw[->] (G.east) -- node[midway, above]{$x$} ++(1, 0); \end{tikzpicture} #+end_src #+NAME: fig:velocity_to_displacement_psd #+CAPTION: Schematic of the instrumentation used for the measurement #+RESULTS: fig:velocity_to_displacement_psd [[file:figs/velocity_to_displacement_psd.png]] The displacement is the integral of the velocity. We then have that \begin{equation} S_{xx}(\omega) = \left|\frac{1}{j \omega}\right|^2 S_{vv}(\omega) \end{equation} Using a frequency variable in Hz: \begin{equation} S_{xx}(f) = \left| \frac{1}{j 2\pi f} \right|^2 S_{vv}(f) \end{equation} For the Amplitude Spectral Density: \begin{equation} \Gamma_{xx}(f) = \frac{1}{2\pi f} \Gamma_{vv}(f) \end{equation} #+begin_note \begin{equation} S_{xx}(\omega = 1) = S_{vv}(\omega = 1) \end{equation} #+end_note Now if we want to obtain the Power Spectral Density of the Position or Acceleration: For each frequency: \[ \left| \frac{d sin(2 \pi f t)}{dt} \right| = | 2 \pi f | \times | \cos(2\pi f t) | \] \[ \left| \int_0^t sin(2 \pi f \tau) d\tau \right| = \left| \frac{1}{2 \pi f} \right| \times | \cos(2\pi f t) | \] \[ ASD_x(f) = \frac{1}{2\pi f} ASD_v(f) \ \left[\frac{m}{\sqrt{Hz}}\right] \] \[ ASD_a(f) = 2\pi f ASD_v(f) \ \left[\frac{m/s^2}{\sqrt{Hz}}\right] \] And we have \[ PSD_x(f) = {ASD_x(f)}^2 = \frac{1}{(2 \pi f)^2} {ASD_v(f)}^2 = \frac{1}{(2 \pi f)^2} PSD_v(f) \] Note here that we always have \[ PSD_x \left(f = \frac{1}{2\pi}\right) = PSD_v \left(f = \frac{1}{2\pi}\right) = PSD_a \left(f = \frac{1}{2\pi}\right), \quad \frac{1}{2\pi} \approx 0.16 [Hz] \] If we want to compute the Cumulative Power Spectrum: \[ CPS_v(f) = \int_0^f PSD_v(\nu) d\nu \quad [(m/s)^2] \] We can also want to integrate from high frequency to low frequency: \[ CPS_v(f) = \int_f^\infty PSD_v(\nu) d\nu \quad [(m/s)^2] \] The Cumulative Amplitude Spectrum is then the square root of the Cumulative Power Spectrum: \[ CAS_v(f) = \sqrt{CPS_v(f)} = \sqrt{\int_f^\infty PSD_v(\nu) d\nu} \quad [m/s] \] Then, we can obtain the Root Mean Square value of the velocity: \[ v_{\text{rms}} = CAS_v(0) \quad [m/s \ \text{rms}] \] #+begin_src matlab #+end_src * Bibliography :ignore: bibliographystyle:unsrt bibliography:ref.bib