Sensor Fusion - Test Bench
Table of Contents
1 Experimental Setup
| Accelerometer | PCB 393B05 - Vertical (link) | 
| Geophone | Mark Product L4C - Vertical | 
2 Huddle Test
2.1 Load Data
load('./mat/huddle_test.mat', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 't');
dt = t(2) - t(1);
2.2 Data
acc_1 = acc_1 - mean(acc_1); acc_2 = acc_2 - mean(acc_2); geo_1 = geo_1 - mean(geo_1); geo_2 = geo_2 - mean(geo_2);
2.3 Scale Data
From raw data to estimated velocity. This takes into account the sensibility of the sensor and possible integration to go from acceleration to velocity.
G0 = 1.02; % [V/(m/s2)] G_acc = tf(G0);
T = 276; xi = 0.5; w = 2*pi; G_geo = -T*s^2/(s^2 + 2*xi*w*s + w^2);
acc_1 = lsim(inv(G_acc), acc_1, t); acc_2 = lsim(inv(G_acc), acc_2, t); geo_1 = lsim(inv(G_geo), geo_1, t); geo_2 = lsim(inv(G_geo), geo_2, t);
2.4 Compare Time Domain Signals
figure; hold on; plot(t, acc_1); plot(t, acc_2); plot(t, geo_1); plot(t, geo_2); hold off;
2.5 Compute PSD
We first define the parameters for the frequency domain analysis.
Fs = 1/dt; % [Hz] win = hanning(ceil(1*Fs));
Then we compute the Power Spectral Density using pwelch function.
[p_acc_1, f] = pwelch(acc_1, win, [], [], Fs); [p_acc_2, ~] = pwelch(acc_2, win, [], [], Fs); [p_geo_1, ~] = pwelch(geo_1, win, [], [], Fs); [p_geo_2, ~] = pwelch(geo_2, win, [], [], Fs);
figure;
hold on;
plot(f, sqrt(p_acc_1));
plot(f, sqrt(p_acc_2));
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD Accelerometers $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
xlim([1, 5000]);
figure;
hold on;
plot(f, sqrt(p_geo_1));
plot(f, sqrt(p_geo_2));
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD Geophones $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
xlim([1, 5000]);
2.6 Dynamical Uncertainty
[T_acc, ~] = tfestimate(acc_1, acc_2, win, [], [], Fs); [T_geo, ~] = tfestimate(geo_1, geo_2, win, [], [], Fs);
2.7 Sensor Noise
[coh_acc, ~] = mscohere(acc_1, acc_2, win, [], [], Fs); [coh_geo, ~] = mscohere(geo_1, geo_2, win, [], [], Fs);
pN_acc = p_acc_1.*(1 - coh_acc); pN_geo = p_geo_1.*(1 - coh_geo);
figure;
hold on;
plot(f, pN_acc, '-', 'DisplayName', 'Accelerometers');
plot(f, pN_geo, '-', 'DisplayName', 'Geophones');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the Measurement Noise $\left[\frac{m/s}{\sqrt{Hz}}\right]$');
xlim([1, 5000]);
legend('location', 'northeast');