ESRF
European Synchrotron Radiation Facility
71, avenue des Martyrs

CS 40220

38043 Grenoble Cedex 9

Sensor Fusion - Test Bench

DEHAEZE Thomas

dehaeze.thomas@gmail.com
le)

February 2, 2021

mailto:dehaeze.thomas@gmail.com

Table of Contents

1 Experimental Setup

2 First identification of the system

2.1 Load Data e e e e e e
2.2 Excitation Signalo
2.3 Identified Plant o e
2.4 Simscape Model - Comparison e e
2.5 Imtegral Force Feedback o . e
2.6 Inertial Sensors e e e e e

3 Optimal IFF Development

3.1 Load Data o o e e e
3.2 Experimental Data oL e e
3.3 Model of the IFF Plant o e
3.4 Root Locus and optimal Controller
3.5 Verification of the achievable damping L
4 Generate the excitation signal
4.1 Transfer function from excitation signal to displacemento L.
4.2 Motion measured during Huddle test e
5 Identification of the Inertial Sensors Dynamics
51 Load Data o . e e
5.2 Compare PSD during Huddle and and during identification
5.3 Compute transfer functions L e

6 Inertial Sensor Noise and the /2 Synthesis of complementary filters

6.1 Load Data o e e e e e e e
6.2 ASD of the Measured displacement e
6.3 ASD of the Sensor Noise 0 i e e e e e e e
6.4 Noise Model o L e
6.5 Ho Synthesis of the Complementary Filters
6.6 Results. . . . o o e e e e

7 Inertial Sensor Dynamics Uncertainty and the 7., Synthesis of complementary filters
7.1 Load Data o o e e

7.2 Compute the dynamics of both sensors L
7.3 Dynamics uncertainty estimation Lo e
7.4 Heo Synthesis of Complementary Filters o
7.5 Obtained Super Sensor Dynamical Uncertainty
8 Optimal and Robust sensor fusion using the Hs/H ., synthesis
8.1 Noise and Dynamical uncertainty weights L oo
8.2 Obtained Super Sensor NOISE o i e e e e e e e e e
8.3 Obtained Super Sensor Dynamical Uncertainty
8.4 Experimental Super Sensor Dynamical Uncertainty,
8.5 Experimental Super Sensor Noise e

9 Matlab Functions

9.1 createWeight e
9.2 plotMagUncertainty e
9.3 plotPhaseUncertainty e

10
10
10
10
12
12

14
14
14

17
17
17
18

20
20
20
20
22
22
22

25
25
25
25
25
27

29
29
29
29
29
29

In this document, we wish the experimentally validate sensor fusion of inertial sensors.
This document is divided into the following sections:

Section 1: the experimental setup is described
Section 2: a first identification of the system dynamics is performed
Section 3: the integral force feedback active damping technique is applied on the system

Section 4: the optimal excitation signal is determine in order to have the best possible system dynamics
estimation

Section 5: the inertial sensor dynamics are experimentally estimated

Section 6: the inertial sensor noises are estimated and the Ho synthesis of complementary filters is performed
in order to yield a super sensor with minimal noise

Section 7: the dynamical uncertainty of the inertial sensors is estimated. Then the H., synthesis of
complementary filters is performed in order to minimize the super sensor dynamical uncertainty

Section 8: Optimal sensor fusion is performed using the Ha/H oo synthesis

1 Experimental Setup

The goal of this experimental setup is to experimentally merge inertial sensors. To merge the sensors, optimal and
robust complementary filters are designed.
A schematic of the test-bench used is shown in Figure 1 and a picture of it is shown in Figure 2.

SpeedGoat d

Interferometer

L-22

<
N

Geophone

DLPVA-100-B-D
Accelerometer

393B05

ay

ADC |
ag

I

ADC =

°
O
°
m = 5kg B¢+ Air Bearing
°
O
O

[oNoNoNON¢ Xo)

S i

APA95ML

Sensor

Actuator

1

Figure 1 — Schematic of the test-bench

Interferometer

Geophones

Accelerometers

Air Bearing

APA95ML

Figure 2 — Picture of the test-bench

Two inertial sensors are used:
o An vertical accelerometer PCB 393B05 (doc)
e A vertical geophone Mark Product L-22

Table 1 — Accelerometer (393B05) Specifications

Specification Value
Sensitivity 1.02 [V/(m/s2)]
Resonant Frequency > 2.5 [kHz]

Resolution (1 to 10kHz) 0.00004 [m/s2 rms]
Table 2 — Geophone (L22) Specifications
Specification Value

Sensitivity To be measured [V/(m/s)]
Resonant Frequency 2 [Hz|

Basic characteristics of both sensors are shown in Tables 1 and 2.

The ADC used are the 10131 Speedgoat module (link) with a 16bit resolution over +/- 10V.

The geophone signals are amplified using a DLPVA-100-B-D voltage amplified from Femto (doc). The force sensor
signal is amplified using a Low Noise Voltage Preamplifier from Ametek (doc).

The excitation signal is amplified by a linear amplified from Cedrat (LA75B) with a gain equals to 20 (doc).
Geophone electronics:

o gain: 10 (20dB)

e low pass filter: 1.5Hz

o hifth pass filter: 100kHz (2nd order)
Force Sensor electronics:

o gain: 10 (20dB)

e low pass filter: 1st order at 3Hz

« high pass filter: 1st order at 30kHz

https://www.speedgoat.com/products/io-connectivity-analog-io131

BN I N

1

2 First identification of the system

In this section, a first identification of each elements of the system is performed. This include the dynamics from
the actuator to the force sensor, interferometer and inertial sensors.
FEach of the dynamics is compared with the dynamics identified form a Simscape model.

2.1 Load Data

The data is loaded in the Matlab workspace.

id_ol = load('identification_noise_bis.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
Then, any offset is removed.

id_ol.d

id_ol.acc_1
id_ol.acc_2

detrend(id_ol.d, 0);
detrend(id_ol.acc_1, 0);
detrend(id_ol.acc_2, 0);

id_ol.geo_1 detrend(id_ol.geo_1, 0);
id_ol.geo_2 detrend(id_ol.geo_2, 0);
id_ol.f_meas detrend(id_ol.f_meas, 0);
id_ol.u detrend(id_ol.u, 0);

2.2 Excitation Signal

The generated voltage used to excite the system is a white noise and can be seen in Figure 3.

0.15 T T T

-0.15 ' ' '
0 50 100 150 200

Time [s]

Figure 3 — Voltage excitation signal

2.3 Identified Plant

The transfer function from the excitation voltage to the mass displacement and to the force sensor stack voltage are
identified using the tfestimate command.

Ts = id_ol.t(2) - id_ol.t(1);
win = hann(ceil(10/Ts));

[tf_fmeas_est, f] = tfestimate(id_ol.u, id_ol.f_meas, win, [], [1, 1/Ts);
[tf_G_ol_est, ~] = tfestimate(id_ol.u, id_ol.d, win, [, [I, 1/Ts);

The bode plots of the obtained dynamics are shown in Figures 4 and 5.

2.4 Simscape Model - Comparison

A simscape model representing the test-bench has been developed. The same transfer functions as the one identified
using the test-bench can be obtained thanks to the simscape model.

They are compared in Figure 6 and 7. It is shown that there is a good agreement between the model and the
experiment.

load('piezo_amplified_3d.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K');

10? |

10' |

Amplitude

10! —
180 e

90 -

0F

Phase

90 L 4

-180 e — —
10° 10! 102 10°

Frequency [Hz]

Figure 4 — Bode plot of the dynamics from excitation voltage to measured force sensor stack voltage

1073 .
1074 L
=
~
g 10°L
[
gl
]
= 106
310 E
g
< i
1077
10°® ' '
180 ;
90 |
2
L
A
9()
-180 e e P
100 10t 102 10°

Frequency [Hz|

Figure 5 — Bode plot of the dynamics from excitation voltage to displacement of the mass as measured by the interferometer

10° ¢ ———r
E Identification
[Simscape Model
10? |
> E
~
=, [
g 10!
=] 3
= s
= [
:
10° £
107! S
180 ————— e ey
) —
2
Z o
[N
90 |
-180 e T
100 10 102 108

Frequency [Hz]

Figure 6 — Comparison of the dynamics from excitation voltage to measured force sensor stack voltage - Identified dynamics
and Simscape Model

1073 ey

—_
9
S
T

—_
9
ot
T

Amplitude [m/V]
2

—_
9
N
T

—_
9
e 9]

180 T

o
(e}
T

0}

Phase

-90 +

-180 S S e
10° 10! 102 103

Frequency [Hz|

Figure 7 — Comparison of the dynamics from excitation voltage to measured mass displacement - Identified dynamics and
Simscape Model

© LN A W e

2.5 Integral Force Feedback

The force sensor stack can be used to damp the system. This makes the system easier to excite properly without
too much amplification near resonances.

This is done thanks to the integral force feedback control architecture.

The force sensor stack signal is integrated (or rather low pass filtered) and fed back to the force sensor stacks.
The low pass filter used as the controller is defined below:

Kiff = 102/(s + 2#pi*2);
The integral force feedback control strategy is applied to the simscape model as well as to the real test bench.

The damped system is then identified again using a noise excitation.

The data is loaded into Matlab and any offset is removed.

id_cl = load('identification_noise_iff_bis.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
id_cl.d

id_cl.acc_1
id_cl.acc_2

detrend(id_cl.d, 0);
detrend(id_cl.acc_1, 0);
detrend(id_cl.acc_2, 0);

id_cl.geo_1 detrend(id_cl.geo_1, 0);
id_cl.geo_2 detrend(id_cl.geo_2, 0);
id_cl.f_meas = detrend(id_cl.f_meas, 0);
id_cl.u detrend(id_cl.u, 0);

The transfer functions are estimated using tfestimate.

[tf_G_cl_est, ~] = tfestimate(id_cl.u, id_cl.d, win, [1, [1, 1/Ts);
[co_G_cl_est, ~] = mscohere(id_cl.u, id_cl.d, win, [1, [1, 1/Ts);

The dynamics from driving voltage to the measured displacement are compared both in the open-loop and IFF case,
and for the test-bench experimental identification and for the Simscape model in Figure 8. This shows that the
Integral Force Feedback architecture effectively damps the first resonance of the system.

10_3 F T X Ty T 4 TR R R R | ¥ 4 T
i OL - Ident.
— = =QL - Simscape
. CL - Ident.
107 ¢ — = =CL - Simscape

Amplitude [m/V]
2

106

Phase
()

-90 +

180 A=
10° 10! 10° 10°
Frequency [Hz|

Figure 8 — Comparison of the open-loop and closed-loop (IFF) dynamics for both the real identification and the Simscape one

2.6 Inertial Sensors

In order to estimate the dynamics of the inertial sensor (the transfer function from the “absolute” displacement to
the measured voltage), the following experiment can be performed:

[o I B I N

© 0N oA W N e

e The mass is excited such that is relative displacement as measured by the interferometer is much larger that
the ground “absolute” motion.

e The transfer function from the measured displacement by the interferometer to the measured voltage generated
by the inertial sensors can be estimated.

The first point is quite important in order to have a good coherence between the interferometer measurement and
the inertial sensor measurement.

Here, a first identification is performed were the excitation signal is a white noise.

As usual, the data is loaded and any offset is removed.

id = load('identification_noise_opt_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');

id.d = detrend(id.d, 0);
id.acc_1 = detrend(id.acc_1, 0);

id.acc_2 = detrend(id.acc_2, 0);
id.geo_1 = detrend(id.geo_1, 0);
id.geo_2 = detrend(id.geo_2, 0);

id.f_meas = detrend(id.f_meas, 0);
Then the transfer functions from the measured displacement by the interferometer to the generated voltage of the
inertial sensors are computed..

Ts = id.t(2) - id.t(1);
win = hann(ceil(10/Ts));

[tf_accl_est, f] = tfestimate(id.d, id.acc_1, win, [1, [1, 1/Ts);
[co_accl_est, ~] = mscohere(id.d, id.acc_1, win, [1, [1, 1/Ts);
[tf_acc2_est, ~] = tfestimate(id.d, id.acc_2, win, [1, [1, 1/Ts);
[co_acc2_est, ~] = mscohere(id.d, id.acc_2, win, [], [1, 1/Ts);

[tf_geol_est, ~] = tfestimate(id.d, id.geo_1, win, [1, [I, 1/Ts);
[co_geol_est, ~] = mscohere(id.d, id.geo_1, win, [I, [1, 1/Ts);
[tf_geo2_est, ~] = tfestimate(id.d, id.geo_2, win, [], [1, 1/Ts);
[co_geo2_est, ~] = mscohere(id.d, id.geo_2, win, [1, [1, 1/Ts);

The same transfer functions are estimated using the Simscape model.
The obtained dynamics of the accelerometer are compared in Figure 9 while the one of the geophones are compared
in Figure 10.

10"
100}
51071
(&)
=]
E
= -2
= 10
g
<

1079

180 L—— — S

10 10? 10°
Frequency [Hz]

Figure 9 — Comparison of the measured accelerometer dynamics

() p—

10°
S]
5 102t
© E e
o)
=} 4
= e
2, 10'L
5 E
< -
100 ¢
1071
180 - | v
102 10°

Frequency [Hz]

Figure 10 — Comparison of the measured geophone dynamics

N o U AW N e

0 N U A W N

3 Optimal IFF Development

In this section, a proper identification of the transfer function from the force actuator to the force sensor is performed.
Then, an optimal IFF controller is developed and applied experimentally.
The damped system is identified to verified the effectiveness of the added method.

3.1 Load Data

The experimental data is loaded and any offset is removed.
id_ol = load('identification_noise_bis.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');

id_ol.d = detrend(id_ol.d, 0);
id_ol.acc_1 = detrend(id_ol.acc_1, 0);
id_ol.acc_2 = detrend(id_ol.acc_2, 0);
id_ol.geo_1 = detrend(id_ol.geo_1, 0);
id_ol.geo_2 = detrend(id_ol.geo_2, 0);
id_ol.f_meas = detrend(id_ol.f_meas, 0);
id_ol.u = detrend(id_ol.u, 0);

3.2 Experimental Data

The transfer function from force actuator to force sensors is estimated.
The coherence shown in Figure 11 shows that the excitation signal is good enough.

Ts = id_ol.t(2) - id_ol.t(1);
win = hann(ceil(10/Ts));

tfestimate(id_ol.u, id_ol.f_meas, win, [1, [1, 1/Ts);
mscohere(id_ol.u, id_ol.f_meas, win, [1, [1, 1/Ts);

[tf_fmeas_est, f]
[co_fmeas_est, ~]

0.8 - i

Coherence

0 i i HEEHEHH | i i HEHEEHEHH | i i HEHEHIHIHIH
10° 10t 102 103
Frequency [Hz]

Figure 11 — Coherence for the identification of the IFF plant

The obtained dynamics is shown in Figure 12.

3.3 Model of the IFF Plant

In order to plot the root locus for the IFF control strategy, a model of the identified plant is developed.
It consists of several poles and zeros are shown below.

2%pix102;

= 0.01;
2%pi*239.4;
= 0.015;

U
TN

Giff = 2.2%(s72 + 2%xi_z*s*wz + wz"2)/(s”2 + 2%xi_p*s*wp + wp~2) * ...
10%(s/3/pi/ (1 + s/3/pi)) * ...
exp(-Ts*s) ;

The comparison of the identified dynamics and the developed model is done in Figure 13.

10

10? |

10' |

Amplitude

10! —
180 e

90 -

0F

Phase

90 L 4

-180 e — —
10° 10! 102 10°

Frequency [Hz]

Figure 12 — Bode plot of the identified IFF plant

W e
10% |

=

~

= 10"

® :

< C

= /
R= RN et

g 1075

g i

< i

107"

1072 Lo]
180 T
90,

2 \
N
[a B8
90 -
-180 bt H | L

10° 10! 10? 10°
Frequency [Hz]

Figure 13 — IFF Plant + Model

11

Bow N =

N o owm

B oW N =

3.4 Root Locus and optimal Controller

Now, the root locus for the Integral Force Feedback strategy is computed and shown in Figure 14.
Note that the controller used is not a pure integrator but rather a first order low pass filter with a cut-off frequency
set at 2Hz.

1800 T T T T T T T T

1600

1400

1200

1000

800 +
"‘H
600 -

Imaginary Part

400 + .

200 1

0 1 Iy 56 1 :

: : S
-1600 -1400 -1200 -1000 -800 -600 -400 -200 O 200
Real Part

Figure 14 — Root Locus for the IFF control

The controller that yield maximum damping (shown by the red cross in Figure 14) is:

Kiff_opt = 102/(s + 2%pix2);

3.5 Verification of the achievable damping
A new identification is performed with the IFF control strategy applied to the system.
Data is loaded and offset removed.

id_cl = load('identification_noise_iff_bis.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');

id_cl.d
id_cl.acc_1
id_cl.acc_2

detrend(id_cl.d, 0);
detrend(id_cl.acc_1, 0);
detrend(id_cl.acc_2, 0);

id_cl.geo_1 detrend(id_cl.geo_1, 0);
id_cl.geo_2 detrend(id_cl.geo_2, 0);
id_cl.f_meas = detrend(id_cl.f_meas, 0);
id_cl.u detrend(id_cl.u, 0);

The open-loop and closed-loop dynamics are estimated.

[tf_G_ol_est, f] = tfestimate(id_ol.u, id_ol.d, win, [1, [], 1/Ts);
[co_G_ol_est, ~] = mscohere(id_ol.u, id_ol.d, win, [1, [1, 1/Ts);
[tf_G_cl_est, ~] = tfestimate(id_cl.u, id_cl.d, win, [1, [], 1/Ts);

[co_G_cl_est, ~] = mscohere(id_cl.u, id_cl.d, win, [1, [1, 1/Ts);

The obtained coherence is shown in Figure 15 and the dynamics in Figure 16.

12

Coherence

IFF

|

0 I
100 10!

Frequency [Hz]

Figure 15 — Coherence for the transfer function from F to d, with and without IFF

102

103

107"

—_
9
ot

Amplitude |m/V]|

[
2
=3

180

90 -

0+

Phase

90 +

-180 oS

100 10!

102

Frequency [Hz]

Figure 16 — Coherence for the transfer function from F to d, with and without IFF

13

10°

[I N

(S NERC- R CR

AW N e

o

4 Generate the excitation signal

In order to properly estimate the dynamics of the inertial sensor, the excitation signal must be properly chosen.
The requirements on the excitation signal is:

e General much larger motion that the measured motion during the huddle test
e Don’t damage the actuator
To determine the perfect voltage signal to be generated, we need two things:
e the transfer function from voltage to mass displacement
e the PSD of the measured motion by the inertial sensors
o not saturate the sensor signals

« provide enough signal/noise ratio (good coherence) in the frequency band of interest (~0.5Hz to 3kHz)

4.1 Transfer function from excitation signal to displacement

Let’s first estimate the transfer function from the excitation signal in [V] to the generated displacement in [m] as
measured by the inteferometer.

id_cl = load('identification_noise_iff_bis.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');

Ts = id_cl.t(2) - id_cl.t(1);
win = hann(ceil(10/Ts));

[tf_G_cl_est, f] = tfestimate(id_cl.u, id_cl.d, win, [1, [1, 1/Ts);
[co_G_cl_est, ~] = mscohere(id_cl.u, id_cl.d, win, [1, [1, 1/Ts);

Approximate transfer function from voltage output to generated displacement when IFF is used, in [m/V].

G_d_est = -5e-6x(2*pi*230)72/(s72 + 2%0.3*2%pi*240%s + (2%pi*240)72);

4.2 Motion measured during Huddle test
We now compute the PSD of the measured motion by the inertial sensors during the huddle test.
ht = load('huddle_test.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');

ht.d = detrend(ht.d, 0);
ht.acc_1 = detrend(ht.acc_1, 0);

ht.acc_2 = detrend(ht.acc_2, 0);
ht.geo_1 = detrend(ht.geo_1, 0);
ht.geo_2 = detrend(ht.geo_2, 0);

[p_d, f] = pwelch(ht.d, win, [1, [1, 1/Ts);

[p_accl, ~] = pwelch(ht.acc_1, win, [1, [], 1/Ts);
[p_acc2, ~] = pwelch(ht.acc_2, win, [I, [1, 1/Ts);
[p_geol, ~] = pwelch(ht.geo_1, win, [1, [1, 1/Ts);
[p_geo2, ~]1 = pwelch(ht.geo_2, win, [1, [1, 1/Ts);

Using an estimated model of the sensor dynamics from the documentation of the sensors, we can compute the ASD
of the motion in m/v/ Hz measured by the sensors.

G_acc = 1/(1 + s/2/pi/2500);
G_geo = -120%s72/(s72 + 2%0.7*2xpi*2*s + (2*pix2)~2);

From the ASD of the motion measured by the sensors, we can create an excitation signal that will generate much
motion motion that the motion under no excitation.
We create G_exc that corresponds to the wanted generated motion.

G_exc = 0.2e-6/(1 + s/2/pi/2)/(1 + s/2/pi/50);

And we create a time domain signal y_d that have the spectral density described by G_exc.

Fs = 1/Ts;
t 0:Ts:180;
u = sqrt(Fs/2)*randn(length(t), 1);

y_d = 1lsim(G_exc, u, t);

14

107° ¢ : e

—_
9
(=2}

Amplitude |m/V|

1077 |
180 : —_———

90 - -

0_ -

Phase

-90 +

-180 s P L - N S S S
10! 102 103

Frequency [Hz|

Figure 17 — Estimation of the transfer function from the excitation signal to the generated displacement

Huddle Test

1072 ¢ . . 3
i Accelerometer|
: Geophone
104 , Interferometer ‘
1076 ¢
i~y ; E
= _
5 w00
: M}v J |
Z |
1010 [Ll Hﬂ .
10" ;
1074 | - -
1072 10° 102 10*

Frequency [Hz]

Figure 18 — ASD of the motion measured by the sensors

15

(SN

Huddle Test

10_2 T T
Accelerometer
Geophone
10-4 L Excitation]
Interferometer| 3
1076 L
W E
A
2]
< 10710 L]
10712
1071 E L L
1072 10° 102 104

Frequency [Hz]

Figure 19 — Comparison of the ASD of the motion during Huddle and the wanted generated motion

[pxx, ~] = pwelch(y_d, win, 0, [], Fs);

We can now generate the voltage signal that will generate the wanted motion.

y_v = 1lsim(G_exc * ...
(1 + s/2/pi/50) * ...
1/G_d_est * ...
1/(1 + s/2/pi/5e3), ...
u, t);

Voltage [V]

0 50 100 150 200
Time [s]

Figure 20 — Generated excitation signal

16

[N

[N

ok W N e

[I N

5

Us

5.

Identification of the Inertial Sensors Dynamics

ing the excitation signal generated in Section 4, the dynamics of the inertial sensors are identified.

1 Load Data

Both the measurement data during the identification test and during an “huddle test” are loaded.

id
ht

ht
ht
ht
ht
ht
ht

id.
id.
id.
id.
id
id.

5.

The Power Spectral Density of the measured motion during the huddle test and during the identification test are

= load('identification_noise_opt_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
= load('huddle_test.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
.d = detrend(ht.d, 0);

.acc_1 = detrend(ht.acc_1, 0);

.acc_2 = detrend(ht.acc_2, 0);

.geo_1 = detrend(ht.geo_1, 0);

.geo_2 = detrend(ht.geo_2, 0);

.f_meas = detrend(ht.f_meas, 0);

d = detrend(id.d, 0);

acc_1 = detrend(id.acc_1, 0);

acc_2 = detrend(id.acc_2, 0);

geo_1 = detrend(id.geo_1, 0);

.geo_2 = detrend(id.geo_2, 0);

f_meas = detrend(id.f_meas, 0);

2 Compare PSD during Huddle and and during identification

compared in Figures 21 and 22.

Ts
win

[p_
[p_
[p_
[p-
[p_

= ht.t(2) - ht.t(1);
= hann(ceil (10/Ts));

id_d, f] = pwelch(id.d, win, [1, [, 1/Ts);

id_accl, ~] = pwelch(id.acc_1, win, [1, [, 1/Ts);
id_acc2, ~] = pwelch(id.acc_2, win, [1, [1, 1/Ts);
id_geol, ~] = pwelch(id.geo_1, win, [1, [1, 1/Ts);
id_geo2, ~] = pwelch(id.geo_2, win, [1, [1, 1/Ts);

[p_ht_d, ~] = pwelch(ht.d, win, [1, [], 1/Ts);

[p_ht_accl, ~]
[p_ht_acc2, ~]
[p_ht_geol, ~]
[p_ht_geo2, ~]

pwelch(ht.acc_1, win, [1, [1, 1/Ts);
pwelch(ht.acc_2, win, [, [1, 1/Ts);
pwelch(ht.geo_1, win, [1, [J, 1/Ts);
pwelch(ht.geo_2, win, [1, [1, 1/Ts);

[p_ht_fmeas, ~] = pwelch(ht.f_meas, win, [1, [], 1/Ts);

Figure 21 — Comparison of the PSD of the measured motion during the Huddle test and during the identification

102 Huddle Test - Accelerometers

Huddle Test

I dentification Test

PSD [V2/H?]
3

10710 L
10° 10t 102 103
Frequency [Hz]

17

© W N O W N

Huddle Test - Geophones

10_4 T I T
e Hud dle Test
Vi e [demitification Test
ey 1076 L
%
-
= 108
~ L
[@p]
(ol
10—10 N \
1071 10° 10t 102 103

Frequency [Hz]

Figure 22 — Comparison of the PSD of the measured motion during the Huddle test and during the identification

5.3 Compute transfer functions

The transfer functions from the motion as measured by the interferometer (and that should represent the absolute
motion of the mass) to the inertial sensors are estimated:

[tf_accl_est, f]
[co_accl_est, ~]
[tf_acc2_est, ~]
[co_acc2_est, ~]

tfestimate(id.d, id.acc_1, win, [], [1, 1/Ts);
mscohere(id.d, id.acc_1, win, [J, [1, 1/Ts);
tfestimate(id.d, id.acc_2, win, [1, [1, 1/Ts);
mscohere(id.d, id.acc_2, win, [1, [1, 1/Ts);

[tf_geol_est, ~]
[co_geol_est, ~]
[tf_geo2_est, -]
[co_geo2_est, ~]

tfestimate(id.d, id.geo_1, win, [], [1, 1/Ts);
mscohere(id.d, id.geo_1, win, [1, [1, 1/Ts);
tfestimate(id.d, id.geo_2, win, [1, [1, 1/Ts);
mscohere(id.d, id.geo_2, win, [1, [1, 1/Ts);

The obtained coherence are shown in Figure 23.

1

Accelerometer
= Geophone

1

Coherence

10! 10° 10°
Frequency [Hz]

Figure 23 — Coherence for the estimation of the sensor dynamics

We also make a simplified model of the inertial sensors to be compared with the identified dynamics.

G_acc = 1/(1 + s/2/pi/2500); 7 [V/(n/s2)]
G_geo = -1200%s72/ (872 + 2%0.7*2%pi*2xs + (2%pi*2)~2); / [[V/(n/s)]

The model and identified dynamics show good agreement (Figures 24 and 25.)

18

1015.' LFR R AR | . H R R H T TR R R |

100 p—t

ik 10!

[}

o)

E

= -2
=10

g

<

—
]
w

-180 e —
10! 102 10°

Frequency [Hz]

Figure 24 — Identified dynamics of the accelerometers

10*
10° |
10? |

10' £

Amplitude [m‘;s}

10° 10 10? 10°
Frequency [Hz|

Figure 25 — Identified dynamics of the geophones

19

[I N

AW N e

o

AW N e

6 Inertial Sensor Noise and the Ho Synthesis of
complementary filters

In this section, the noise of the inertial sensors (geophones and accelerometers) is estimated.

6.1 Load Data

As before, the identification data is loaded and any offset if removed.

id = load('identification_noise_opt_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
id.d = detrend(id.d, 0);
id.acc_1 = detrend(id.acc_1, 0);

id.acc_2 = detrend(id.acc_2, 0);
id.geo_1 = detrend(id.geo_1, 0);
id.geo_2 = detrend(id.geo_2, 0);

id.f_meas = detrend(id.f_meas, 0);

6.2 ASD of the Measured displacement

The Power Spectral Density of the displacement as measured by the interferometer and the inertial sensors is

computed.

Ts = id.t(2) - id.t(1);
win = hann(ceil(10/Ts));

[p_id_d, f] = pwelch(id.d, win, [1, [, 1/Ts);
[p_id_accl, ~] = pwelch(id.acc_1, win, [1, [1, 1/Ts);
[p_id_acc2, -] pwelch(id.acc_2, win, [1, [1, 1/Ts);
[p_id_geol, ~] pwelch(id.geo_1, win, [1, [1, 1/Ts);
[p_id_geo2, ~] pwelch(id.geo_2, win, [1, [1, 1/Ts);

Let’s use a model of the accelerometer and geophone to compute the motion from the measured voltage.

G_acc = 1/(1 + s/2/pi/2500);
G_geo = -1200%s72/(s72 + 2%0.7*2%pi*2xs + (2xpi*2)~2);

The obtained ASD in m/v/ Hz is shown in Figure 26.

6.3 ASD of the Sensor Noise

The noise of a sensor can be estimated using two identical sensors by computing:
¢ the Power Spectral Density of the measured motion by the two sensors
o the Cross Spectral Density between the two sensors (coherence)

This technique to estimate the sensor noise is described in [1].
The Power Spectral Density of the sensor noise can be estimated using the following equation:

(@)l = 182, @) (1 = Yaraa())

with Sz, the PSD of one of the sensor and 7,,, the coherence between the two sensors.
The coherence between the two accelerometers and between the two geophones is computed.

mscohere(id.acc_1, id.acc_2, win, [1, [1, 1/Ts);
mscohere(id.geo_1, id.geo_2, win, [1, [1, 1/Ts);

[coh_acc, ~]
[coh_geo, ~]

Finally, the Power Spectral Density of the sensors is computed and converted in [m?/Hz].
pN_acc = p_id_accl.*(1 - coh_acc) .*x ...
1./abs(squeeze(freqresp(G_acc*s”™2, £, 'Hz')))."2;

pN_geo = p_id_geol.*(1 - coh_geo) .* ...
1./abs(squeeze(freqresp(G_geo*s, £, 'Hz')))."2;

The ASD of obtained noises are compared with the ASD of the measured signals in Figure 27.

20

i Huddle Test
10 T T T T T
Accelerometer
Geophone
Interferometer
10°¢
N
S
= 108
[
2]
<
10710
10712 L

107! 10° 10 10? 10°
Frequency [Hz]

Figure 26 — ASD of the measured displacement as measured by all the sensors

10_5 T T T

Accelerometer
Geophone

1076 Accelerometers - Noise
Geophones - Noise

1077

r;@g 108é

[E—

ASD

1079 ¢
10—10 _

10711 _

10712 L : :
10° 10 102 10°
Frequency [Hz]

Figure 27 — Comparison of the computed ASD of the noise of the two inertial sensors

21

10_4 F T T T

i Accelerometers - Noise
Geophones - Noise

I~ = = = Accelerometer - Noise Model
1070 | — = =Geophones - Noise Model

1078 ¢

10*9 1 1 1
10° 10! 10? 103
Frequency [Hz]

Figure 28 — ASD of the velocity noise measured by the sensors and the noise models

6.4 Noise Model

Transfer functions are adjusted in order to fit the ASD of the sensor noises (expressed in [m/s/v Hz| for more easy
fitting).
These transfer functions are defined below and compared with the measured ASD in Figure 28.

1x(s/(2%pi*x2000) + 1)72/(s + 0.1%2%pi)/(s + 1e3*2*pi);
4de-4x(s/(2xpix200) + 1)/(s + 1e3x2%pi);

N_acc
N_geo

6.5 Ho Synthesis of the Complementary Filters

We now wish to synthesize two complementary filters to merge the geophone and the accelerometer signal in such a
way that the fused signal has the lowest possible RMS noise.

To do so, we use the Hs synthesis where the transfer functions representing the noise density of both sensors are
used as weights.

The generalized plant used for the synthesis is defined below.

P = [0 N_acc 1;
N_geo -N_acc 0];

And the H2 synthesis is done using the h2syn command.

[H_geo, ~, gamma] = h2syn(P, 1, 1);
H_acc = 1 - H_geo;

The obtained complementary filters are shown in Figure 29.

6.6 Results

Finally, the signals of both sensors are merged using the complementary filters and the super sensor noise is
estimated and compared with the individual sensor noises in Figure 30.

Finally, the Cumulative Power Spectrum is computed and compared in Figure 31.

[~, i_1Hz] = min(abs(f - 1));

CPS_acc = 1/pi*flip(-cumtrapz (2*pi*flip(f), flip((pN_acc.*(2%pi*f))."2)));

CPS_geo = 1/pi*flip(-cumtrapz(2*pi*flip(f), flip((pN_geo.*(2%pi*f))."2)));

CPS_SS = 1/pi*flip(-cumtrapz(2xpi*flip(f), flip((pN_acc.*(2*pi*f)). 2.*abs(squeeze(freqresp(H_acc, f, 'Hz')))."2 +
— (pN_geo.*(2%pixf)) . 2.%abs(squeeze (freqresp(H_geo, £, 'Hz')))."2)));

22

10° ==

107!

Magnitude

—
9
)
T

Hacc 1
Hyeol

180 e

90

0

Phase

gl

-90 - \/—

10° 10! 10? 10°
Frequency [Hz]

Figure 29 — Obtained Complementary Filters

1074 T T T
Accelerometers - Noise|]
Geophones - Noise

Super Sensor - Noise

107°

10-8

10—9 L | L N | L |
10° 10! 10? 103
Frequency [Hz]

Figure 30 — ASD of the super sensor noise (velocity)

23

10*

1078 T T T

Ot = 48 pm/s(rms)
04,, = 8um/s(rms)
oz = 6 pm/s(rms)
1077

g

=

8

3]

2.

n 10710}

g

3 .

[l

£ 101

-

i

=}

g

=}

© 10712 L

10—13 L N | L N | L N
10° 10! 10 10°

Frequency [Hz]

Figure 31 — Cumulative Power Spectrum of the Sensor Noise (velocity)

24

o v A W N e

Bow N =

© ® N o o

SISO R SR

N

7 Inertial Sensor Dynamics Uncertainty and the Ho
Synthesis of complementary filters

When merging two sensors, it is important to be sure that we correctly know the sensor dynamics near the merging
frequency. Thus, identifying the uncertainty on the sensor dynamics is quite important to perform a robust merging.

7.1 Load Data

Data is loaded and offset is removed.
id = load('identification_noise_opt_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');

id.d = detrend(id.d, 0);

id.acc_1 = detrend(id.acc_1, 0);
id.acc_2 = detrend(id.acc_2, 0);
id.geo_1 = detrend(id.geo_1, 0);
id.geo_2 = detrend(id.geo_2, 0);
id.f_meas = detrend(id.f_meas, 0);

7.2 Compute the dynamics of both sensors
The dynamics of inertial sensors are estimated (in [V/m]).

Ts = id.t(2) - id.t(1);
win = hann(ceil(10/Ts));

[tf_accl_est, f] = tfestimate(id.d, id.acc_1, win, [1, [1, 1/Ts);
[co_accl_est, ~] = mscohere(id.d, id.acc_1, win, [1, [1, 1/Ts);
[tf_acc2_est, ~] = tfestimate(id.d, id.acc_2, win, [1, [1, 1/Ts);
[co_acc2_est, ~] = mscohere(id.d, id.acc_2, win, [1, [1, 1/Ts);

[tf_geol_est, ~] = tfestimate(id.d, id.geo_1, win, [1, [1, 1/Ts);
[co_geol_est, ~] = mscohere(id.d, id.geo_1, win, [1, [1, 1/Ts);
[tf_geo2_est, ~] = tfestimate(id.d, id.geo_2, win, [1, [1, 1/Ts);
[co_geo2_est, ~] = mscohere(id.d, id.geo_2, win, [1, [], 1/Ts);

The (nominal) models of the inertial sensors from the absolute displacement to the generated voltage are defined
below:

G_acc
G_geo

1/(1 + s/2/pi/2000)
-1200%872/ (872 + 2%0.7*2%pi*2ks + (2%pix2)72);

These models are very simplistic models, and we then take into account the un-modelled dynamics with dynamical
uncertainty.

7.3 Dynamics uncertainty estimation

Weights representing the dynamical uncertainty of the sensors are defined below.

w_acc = createWeight('n', 2, 'GO', 10, 'G1', 0.2, 'Ge', 1, 'w0', 6*%2%pi) * ...
createWeight('n', 2, 'GO', 1, 'GL', 5/0.2, 'Gc', 1/0.2, 'w0', 1300%2xpi);

w_geo = createWeight('n', 2, 'GO', 0.6, 'G1', 0.2, 'Ge', 0.3, 'wO', 3*2*pi) x ...
createWeight('n', 2, 'GO', 1, 'G1', 10/0.2, 'Ge', 1/0.2, 'w0', 800%2%pi);

The measured dynamics are compared with the modelled one as well as the modelled uncertainty in Figure 32 for
the accelerometers and in Figure 33 for the geophones.

7.4 H, Synthesis of Complementary Filters

A last weight is now defined that represents the maximum dynamical uncertainty that is allowed for the super
sensor.

wu = inv(createWeight('n', 2, 'GO', 0.7, 'G1l', 0.3, 'Ge', 0.4, 'wO', 3*2*pi) x ...
createWeight('n', 2, 'GO', 1, 'Gi', 6/0.3, 'Gc', 1/0.3, 'w0', 1200%2%pi));

This dynamical uncertainty is compared with the two sensor uncertainties in Figure 34.

The generalized plant used for the synthesis is defined:

P = [wu*w_acc -wu*w_acc;

0 WU*W_geo;
1 01;

25

— 0
gz 10
5]
3 -1
ég 10
=]
o0 i
1072 £ Gace
E Meaurement
GGCC
1 0 -3 1 il 1
180

90

Phase [deg]
o

-90

-180

Figure 32 — Modeled dynamical uncertainty and

10° 10! 102 10°

Frequency [Hz]

meaured dynamics of the accelerometers

104 E . . T ™ T
; Ggeo
3 Measurement

S2107F |——Cu
O e
= 2
:,g 10
o
@0
<
= 10!

100

90

Phase [deg]
=

-180

-270

10° 10! 102 10°

Frequency [Hz]

Figure 33 — Modeled dynamical uncertainty and meaured dynamics of the geophones

26

10! ——————r ———— —
‘ i
~
L ’/, 4
2 100 ST T T e calat S 1
'é :___——-"""""~~\]
&0 \
[av
= 1071 \ _
1+WaccA
1+ WeoA
- — =1+W,'A
10*2 I I |l An
180 H H BT T T T T 'II
I
90 | 1 J
) Y]
:SL Mo~ - . L il “
g O 1
'CQG s A ‘\\
o \
90 | : a
I
_180 H R S S | H R | H PR i | | H P
100 10! 102 103 10*

Frequency [Hz]
Figure 34 — Individual sensor uncertainty (normalized by their dynamics) and the wanted mazimum super sensor noise

uncertainty

And the H., synthesis using the hinfsyn command is performed.

1 [H_geo, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');

Test bounds: 0.8556 <= gamma <= 1.34

gamma X>=0 Y>=0 rho (XY)<1 p/f
1.071e+00 0.0e+00 0.0e+00 0.000e+00 P
9.571e-01 0.0e+00 0.0e+00 9.436e-16 p
9.049e-01 0.0e+00 0.0e+00 1.084e-15 p
8.799e-01 0.0e+00 0.0e+00 1.191e-16 P
8.677e-01 0.0e+00 0.0e+00 6.905e-15 p
8.616e-01 0.0e+00 0.0e+00 0.000e+00 p
8.586e-01 1.1e-17 0.0e+00 6.917e-16 p
8.571e-01 0.0e+00 0.0e+00 6.991e-17 p
8.564e-01 0.0e+00 0.0e+00 1.492e-16 p

Best performance (actual): 0.8563

The complementary filter is defined as follows:

1 H_acc = 1 - H_geo;

The bode plot of the obtained complementary filters is shown in Figure

7.5 Obtained Super Sensor Dynamical Uncertainty

The obtained super sensor dynamical uncertainty is shown in Figure 36.

27

10" ¢

100

Magnitude

=
(e}
L

10!

Frequency [Hz]

102

Figure 35 — Bode plot of the obtained complementary filters using the Hoo synthesis

10!

10°

Magnitude

107!

+W1A1
1+ W2A2
14+ WA + WhA,

- = =1+W,'A

-180
10°

10!

10°
Frequency [Hz]

Figure 36 — Obtained Super sensor dynamics uncertainty

28

103

10*

- [N R

M)

SRV VR

(SRR R

8 Optimal and Robust sensor fusion using the Ho/H oo
synthesis

8.1 Noise and Dynamical uncertainty weights

N_acc = (s/(2*%pi*2000) + 1)72/(s + 0.1*2*pi)/(s + 1e3*2%pi)/(1 + s/2/pi/1e3);

N_geo = 4e-4*((s + 2*pi)/(2*pi*200) + 1)/(s + 1e3*2*pi)/(1 + s/2/pi/1e3);

w_acc = createWeight('n', 2, 'Go', 10, 'G1', 0.2, 'Ge', 1, 'wO', 6*2*pi) * ...
createWeight('n', 2, 'GO', 1, 'G1', 5/0.2, 'Ge', 1/0.2, 'w0', 1300%2xpi);

w_geo = createWeight('n', 2, 'GO', 0.6, 'G1', 0.2, 'Ge', 0.3, 'wO', 3*2*pi) x ...
createWeight('n', 2, 'GO', 1, 'G1', 10/0.2, 'Ge', 1/0.2, 'w0O', 800%2%pi);

wu = inv(createWeight('n', 2, 'GO', 0.7, 'G1', 0.3, 'Ge', 0.4, 'wO', 3*2*pi) x ...
createWeight('n', 2, 'GO', 1, 'Gl', 6/0.3, 'Ge', 1/0.3, 'w0', 1200%2%pi));

P = [wu*w_acc -wu*w_acc;

0 WU*W_geo;
N_acc -N_acc;

0 N_geo;

1 0l;

And the mixed Ho/Hoo synthesis is performed.
[H_geo, ~] = h2hinfsyn(ss(P), 1, 1, 2, [0, 1], 'HINFMAX', 1, 'H2MAX', Inf, 'DKMAX', 100, 'TOL', 1e-3, 'DISPLAY', 'on');

H_acc = 1 - H_geo;

8.2 Obtained Super Sensor Noise

freqs = logspace(0, 4, 1000);

PSD_Sgeo = abs(squeeze(freqresp(N_geo, freqs, 'Hz')))."2;

PSD_Sacc abs(squeeze (freqresp(N_acc, freqs, 'Hz')))."2;

PSD_Hss abs(squeeze (freqresp(N_acc*H_acc, freqs, 'Hz'))).”2 + ...
abs (squeeze (freqresp (N_geo*H_geo, freqs, 'Hz')))."2;

107* .

10—10 L
10° 10? 10*
Frequency [Hz]

Figure 37 — Power Spectral Density of the Super Sensor obtained with the mized Ha/Hoo synthesis

8.3 Obtained Super Sensor Dynamical Uncertainty
8.4 Experimental Super Sensor Dynamical Uncertainty

The super sensor dynamics is shown in Figure 39.

8.5 Experimental Super Sensor Noise

The obtained super sensor noise is shown in Figure 40.

29

10!

—

[
[en)
=)

Magnitude
2

—_
i
[V}

1+ WiA
1+ WhA,
1+ WA + WhA,
- = =14+W,'A

180

90 -

Phase [deg]
o

-90 +

-180

100

10!

. |
102 108 1

Frequency [Hz]

04

Figure 38 — Super sensor dynamical uncertainty (solid curve) when using the mized Ha/Hoo Synthesis

10"
. ® 4
—_— 0 -~
SER .
) teol
ERTRE
E 10l
'E Ga(‘(‘
%0 . Meaurement
S 102k Gyeo
. Meaurement
. 88
1073 i
180

Phase [deg]
o

-90

-180

10° 10!

Figure 39 — Inertial Sensor dynamics as well as the super sensor dynamics

10° 10°
Frequency [Hz]

10—10 S

—

[E—

ASD

100 |

100

%@ 1071 -

Accelerometers - Noise
Geophones - Noise
Super Sensor - Noise

102 10°

Frequency [Hz]

Figure 40 — ASD of the super sensor obtained using the Ha/Hoo synthesis

31

9 Matlab Functions
9.1 createWeight

This Matlab function is accessible here.

function [W] = createleight(args)

Bow N =

0 N o

11
12
13
14
15
16 arguments
17 args.n (1,1) double {mustBeInteger, mustBePositive} = 1
18 args.GO (1,1) double {mustBeNumeric, mustBePositive} = 0.1
19 args.Gl (1,1) double {mustBeNumeric, mustBePositive} = 10
20 args.Gc (1,1) double {mustBeNumeric, mustBePositive} = 1
21 args.w0 (1,1) double {mustBeNumeric, mustBePositive} = 1
22 end
23
24 mustBeBetween(args.GO, args.Gc, args.Gl);
25
26 s
27
28 w (((1/args.w0)*sqrt ((1-(args.G0/args.Gc) " (2/args.n))/(1-(args.Gc/args.G1) “(2/args.n))) *s +

— (args.G0/args.Gc) ~(1/args.n))/((1/args.G1) " (1/args.n)*(1/args.w0)*sqrt ((1-(args.G0/args.Gec) " (2/args.n))/(1-(args.Gc/args.G1) ~(2/args.n))) *s

< + (1/args.Gc)"(1/args.n))) args.n;

tf('s');

29

30 end

31

32 % Custom validation function

33 function mustBeBetween(a,b,c)

34 if ~((@>b&& b>c) || (c>b&&b>a)
35 eid = 'createWeight:inputError';

36 msg = 'Gc should be between GO and G1.';
37 throwAsCaller (MException(eid,msg))

38 end

39 end

9.2 plotMagUncertainty

This Matlab function is accessible here.

function [p] = plotMagUncertainty(W, fregs, args)

Bow N =

o N o u

11

12

13

14

15

16

17 arguments

18 W

19 freqs double {mustBeNumeric, mustBeNonnegative}

20 args.G = tf(1)

21 args.color_i (1,1) double {mustBeInteger, mustBePositive} = 1
22 args.opacity (1,1) double {mustBeNumeric, mustBeNonnegative} = 0.3
23 args.DisplayName char = ''

24 end

25

26

27 colors = get(groot, 'defaultAxesColorOrder');

28

32

src/createWeight.m
src/plotMagUncertainty.m

29
30
31
32
33
34
35
36
37
38

© 0N oA W N e

AR R A W W W W W W W WWWNNNNNNNNNNRS R B R R e e
W N~ O OOk W R O®©®KNNOOAWNR,O©®®NOWA RN RO

p = patch([freqs flip(fregs)],

[abs(squeeze (freqresp(args.G, freqs, 'Hz'))).*(1 + abs(squeeze(freqresp(W, fregs, 'Hz')))); ..
flip(abs(squeeze(freqresp(args.G, freqs, 'Hz'))).*max(l - abs(squeeze(freqresp(W, freqs, 'Hz')))
'DisplayName', args.DisplayName) ;

.FaceColor
.EdgeColor
.FaceAlpha

elueRiiel

end

colors(args.color_i,
'none';
args.opacity;

)5

9.3 plotPhaseUncertainty

This Matlab function is accessible here.

function [p]

arguments
W

= plotPhaseUncertainty (W, freqs, args)

freqs double {mustBeNumeric, mustBeNonnegative}

args.G =
args.color_i (1,1) double {mustBeInteger, mustBePositive} =
args.opacity (1,1) double {mustBeNumeric, mustBePositive}

tf(1)

args.DisplayName char = ''

end

colors

Dphi = 180/pi*asin(abs(squeeze(freqresp(W, fregs,
Dphi (abs(squeeze (freqresp(W, freqs, 'Hz'))) > 1)
G_ang = 180/pi*angle(squeeze(freqresp(args.G, fregs,

p = patch([freqs flip(freqs)], [G_ang+Dphi; flip(G_ang-Dphi)],
'DisplayName', args.DisplayName) ;

p.FaceColor
p.EdgeColor
p.FaceAlpha

end

ref

= get(groot,

colors(args.color_i,
'none' ;
args.opacity;

'defaultAxesColorOrder');

DN

'Hz'))));
= 360;

'Hz')));

'
B

33

1e-6))1,

!

>

src/plotPhaseUncertainty.m

References

[1] A. Barzilai, T. VanZandt, and T. Kenny, “Technique for measurement of the noise of a sensor in the presence of
large background signals,” Review of Scientific Instruments, vol. 69, no. 7, pp. 2767-2772, 1998 (cit. on p. 20).

34

	1 Experimental Setup
	2 First identification of the system
	2.1 Load Data
	2.2 Excitation Signal
	2.3 Identified Plant
	2.4 Simscape Model - Comparison
	2.5 Integral Force Feedback
	2.6 Inertial Sensors

	3 Optimal IFF Development
	3.1 Load Data
	3.2 Experimental Data
	3.3 Model of the IFF Plant
	3.4 Root Locus and optimal Controller
	3.5 Verification of the achievable damping

	4 Generate the excitation signal
	4.1 Transfer function from excitation signal to displacement
	4.2 Motion measured during Huddle test

	5 Identification of the Inertial Sensors Dynamics
	5.1 Load Data
	5.2 Compare PSD during Huddle and and during identification
	5.3 Compute transfer functions

	6 Inertial Sensor Noise and the H2 Synthesis of complementary filters
	6.1 Load Data
	6.2 ASD of the Measured displacement
	6.3 ASD of the Sensor Noise
	6.4 Noise Model
	6.5 H2 Synthesis of the Complementary Filters
	6.6 Results

	7 Inertial Sensor Dynamics Uncertainty and the H Synthesis of complementary filters
	7.1 Load Data
	7.2 Compute the dynamics of both sensors
	7.3 Dynamics uncertainty estimation
	7.4 H Synthesis of Complementary Filters
	7.5 Obtained Super Sensor Dynamical Uncertainty

	8 Optimal and Robust sensor fusion using the H2/H synthesis
	8.1 Noise and Dynamical uncertainty weights
	8.2 Obtained Super Sensor Noise
	8.3 Obtained Super Sensor Dynamical Uncertainty
	8.4 Experimental Super Sensor Dynamical Uncertainty
	8.5 Experimental Super Sensor Noise

	9 Matlab Functions
	9.1 createWeight
	9.2 plotMagUncertainty
	9.3 plotPhaseUncertainty

