%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); addpath('./mat/'); % Load Data % As before, the identification data is loaded and any offset if removed. id = load('identification_noise_opt_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't'); id.d = detrend(id.d, 0); id.acc_1 = detrend(id.acc_1, 0); id.acc_2 = detrend(id.acc_2, 0); id.geo_1 = detrend(id.geo_1, 0); id.geo_2 = detrend(id.geo_2, 0); id.f_meas = detrend(id.f_meas, 0); % ASD of the Measured displacement % The Power Spectral Density of the displacement as measured by the interferometer and the inertial sensors is computed. Ts = id.t(2) - id.t(1); win = hann(ceil(10/Ts)); [p_id_d, f] = pwelch(id.d, win, [], [], 1/Ts); [p_id_acc1, ~] = pwelch(id.acc_1, win, [], [], 1/Ts); [p_id_acc2, ~] = pwelch(id.acc_2, win, [], [], 1/Ts); [p_id_geo1, ~] = pwelch(id.geo_1, win, [], [], 1/Ts); [p_id_geo2, ~] = pwelch(id.geo_2, win, [], [], 1/Ts); % Let's use a model of the accelerometer and geophone to compute the motion from the measured voltage. G_acc = 1/(1 + s/2/pi/2500); % [V/(m/s2)] G_geo = -1200*s^2/(s^2 + 2*0.7*2*pi*2*s + (2*pi*2)^2); % [[V/(m/s)] % The obtained ASD in $m/\sqrt{Hz}$ is shown in Figure [[fig:measure_displacement_all_sensors]]. figure; hold on; set(gca, 'ColorOrderIndex', 1); plot(f, sqrt(p_id_acc1)./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))), ... 'DisplayName', 'Accelerometer'); set(gca, 'ColorOrderIndex', 1); plot(f, sqrt(p_id_acc2)./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))), ... 'HandleVisibility', 'off'); set(gca, 'ColorOrderIndex', 2); plot(f, sqrt(p_id_geo1)./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))), ... 'DisplayName', 'Geophone'); set(gca, 'ColorOrderIndex', 2); plot(f, sqrt(p_id_geo2)./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))), ... 'HandleVisibility', 'off'); set(gca, 'ColorOrderIndex', 3); plot(f, sqrt(p_id_d), 'DisplayName', 'Interferometer'); hold off; set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('ASD [$m/\sqrt{Hz}$]'); xlabel('Frequency [Hz]'); title('Huddle Test') legend(); xlim([1e-1, 5e3]); ylim([1e-12, 1e-4]); % ASD of the Sensor Noise % The noise of a sensor can be estimated using two identical sensors by computing: % - the Power Spectral Density of the measured motion by the two sensors % - the Cross Spectral Density between the two sensors (coherence) % This technique to estimate the sensor noise is described in cite:barzilai98_techn_measur_noise_sensor_presen. % The Power Spectral Density of the sensor noise can be estimated using the following equation: % \begin{equation} % |S_n(\omega)| = |S_{x_1}(\omega)| \Big( 1 - \gamma_{x_1 x_2}(\omega) \Big) % \end{equation} % with $S_{x_1}$ the PSD of one of the sensor and $\gamma_{x_1 x_2}$ the coherence between the two sensors. % The coherence between the two accelerometers and between the two geophones is computed. [coh_acc, ~] = mscohere(id.acc_1, id.acc_2, win, [], [], 1/Ts); [coh_geo, ~] = mscohere(id.geo_1, id.geo_2, win, [], [], 1/Ts); % Finally, the Power Spectral Density of the sensors is computed and converted in $[m^2/Hz]$. pN_acc = p_id_acc1.*(1 - coh_acc) .* ... % [V^2/Hz] 1./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))).^2; % [(m/V)^2] pN_geo = p_id_geo1.*(1 - coh_geo) .* ... % [V^2/Hz] 1./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))).^2; % [(m/V)^2] % The ASD of obtained noises are compared with the ASD of the measured signals in Figure [[fig:noise_inertial_sensors_comparison]]. figure; hold on; plot(f, sqrt(p_id_acc1)./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))), ... 'DisplayName', 'Accelerometer'); plot(f, sqrt(p_id_geo1)./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))), ... 'DisplayName', 'Geophone'); plot(f, sqrt(pN_acc), '-', 'DisplayName', 'Accelerometers - Noise'); plot(f, sqrt(pN_geo), '-', 'DisplayName', 'Geophones - Noise'); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{m}{\sqrt{Hz}}\right]$'); xlim([1, 5000]); ylim([1e-12, 1e-5]); legend('location', 'northeast'); % Noise Model % Transfer functions are adjusted in order to fit the ASD of the sensor noises (expressed in $[m/s/\sqrt{Hz}]$ for more easy fitting). % These transfer functions are defined below and compared with the measured ASD in Figure [[fig:noise_models_velocity]]. N_acc = 1*(s/(2*pi*2000) + 1)^2/(s + 0.1*2*pi)/(s + 1e3*2*pi); % [m/sqrt(Hz)] N_geo = 4e-4*(s/(2*pi*200) + 1)/(s + 1e3*2*pi); % [m/sqrt(Hz)] freqs = logspace(0, 4, 1000); figure; hold on; plot(f, sqrt(pN_acc).*(2*pi*f), '-', 'DisplayName', 'Accelerometers - Noise'); plot(f, sqrt(pN_geo).*(2*pi*f), '-', 'DisplayName', 'Geophones - Noise'); set(gca, 'ColorOrderIndex', 1); plot(freqs, abs(squeeze(freqresp(N_acc, freqs, 'Hz'))), '--', 'DisplayName', 'Accelerometer - Noise Model'); plot(freqs, abs(squeeze(freqresp(N_geo, freqs, 'Hz'))), '--', 'DisplayName', 'Geophones - Noise Model'); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{m/s}{\sqrt{Hz}}\right]$'); xlim([1, 5000]); legend('location', 'northeast'); % $\mathcal{H}_2$ Synthesis of the Complementary Filters % We now wish to synthesize two complementary filters to merge the geophone and the accelerometer signal in such a way that the fused signal has the lowest possible RMS noise. % To do so, we use the $\mathcal{H}_2$ synthesis where the transfer functions representing the noise density of both sensors are used as weights. % The generalized plant used for the synthesis is defined below. P = [0 N_acc 1; N_geo -N_acc 0]; % And the $\mathcal{H}_2$ synthesis is done using the =h2syn= command. [H_geo, ~, gamma] = h2syn(P, 1, 1); H_acc = 1 - H_geo; % The obtained complementary filters are shown in Figure [[fig:complementary_filters_velocity_H2]]. figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(H_acc, freqs, 'Hz'))), '-', 'DisplayName', '$H_{acc}$'); plot(freqs, abs(squeeze(freqresp(H_geo, freqs, 'Hz'))), '-', 'DisplayName', '$H_{geo}$'); set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]); hold off; legend('location', 'northeast'); ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(H_acc, freqs, 'Hz'))), '-'); plot(freqs, 180/pi*angle(squeeze(freqresp(H_geo, freqs, 'Hz'))), '-'); set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2], 'x'); xlim([freqs(1), freqs(end)]); % Results % Finally, the signals of both sensors are merged using the complementary filters and the super sensor noise is estimated and compared with the individual sensor noises in Figure [[fig:super_sensor_noise_asd_velocity]]. freqs = logspace(0, 4, 1000); figure; hold on; plot(f, pN_acc.*(2*pi*f), '-', 'DisplayName', 'Accelerometers - Noise'); plot(f, pN_geo.*(2*pi*f), '-', 'DisplayName', 'Geophones - Noise'); plot(f, sqrt((pN_acc.*(2*pi*f)).^2.*abs(squeeze(freqresp(H_acc, f, 'Hz'))).^2 + (pN_geo.*(2*pi*f)).^2.*abs(squeeze(freqresp(H_geo, f, 'Hz'))).^2), 'k-', 'DisplayName', 'Super Sensor - Noise'); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{m/s}{\sqrt{Hz}}\right]$'); xlim([1, 5000]); legend('location', 'northeast'); % #+name: fig:super_sensor_noise_asd_velocity % #+caption: ASD of the super sensor noise (velocity) % #+RESULTS: % [[file:figs/super_sensor_noise_asd_velocity.png]] % Finally, the Cumulative Power Spectrum is computed and compared in Figure [[fig:super_sensor_noise_cas_velocity]]. [~, i_1Hz] = min(abs(f - 1)); CPS_acc = 1/pi*flip(-cumtrapz(2*pi*flip(f), flip((pN_acc.*(2*pi*f)).^2))); CPS_geo = 1/pi*flip(-cumtrapz(2*pi*flip(f), flip((pN_geo.*(2*pi*f)).^2))); CPS_SS = 1/pi*flip(-cumtrapz(2*pi*flip(f), flip((pN_acc.*(2*pi*f)).^2.*abs(squeeze(freqresp(H_acc, f, 'Hz'))).^2 + (pN_geo.*(2*pi*f)).^2.*abs(squeeze(freqresp(H_geo, f, 'Hz'))).^2))); figure; hold on; plot(f, CPS_acc, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{acc}} = %.0f\\,\\mu m/s (rms)$', 1e6*sqrt(CPS_acc(i_1Hz)))); plot(f, CPS_geo, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{geo}} = %.0f\\,\\mu m/s (rms)$', 1e6*sqrt(CPS_geo(i_1Hz)))); plot(f, CPS_SS, 'k-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}} = %.0f\\,\\mu m/s (rms)$', 1e6*sqrt(CPS_SS(i_1Hz)))); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Cumulative Power Spectrum'); hold off; xlim([1, 4e3]); legend('location', 'northeast');