%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); addpath('./mat/'); % Load Data % Both the measurement data during the identification test and during an "huddle test" are loaded. id = load('identification_noise_opt_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't'); ht = load('huddle_test.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't'); ht.d = detrend(ht.d, 0); ht.acc_1 = detrend(ht.acc_1, 0); ht.acc_2 = detrend(ht.acc_2, 0); ht.geo_1 = detrend(ht.geo_1, 0); ht.geo_2 = detrend(ht.geo_2, 0); ht.f_meas = detrend(ht.f_meas, 0); id.d = detrend(id.d, 0); id.acc_1 = detrend(id.acc_1, 0); id.acc_2 = detrend(id.acc_2, 0); id.geo_1 = detrend(id.geo_1, 0); id.geo_2 = detrend(id.geo_2, 0); id.f_meas = detrend(id.f_meas, 0); % Compare PSD during Huddle and and during identification % The Power Spectral Density of the measured motion during the huddle test and during the identification test are compared in Figures [[fig:comp_psd_huddle_test_identification_acc]] and [[fig:comp_psd_huddle_test_identification_geo]]. Ts = ht.t(2) - ht.t(1); win = hann(ceil(10/Ts)); [p_id_d, f] = pwelch(id.d, win, [], [], 1/Ts); [p_id_acc1, ~] = pwelch(id.acc_1, win, [], [], 1/Ts); [p_id_acc2, ~] = pwelch(id.acc_2, win, [], [], 1/Ts); [p_id_geo1, ~] = pwelch(id.geo_1, win, [], [], 1/Ts); [p_id_geo2, ~] = pwelch(id.geo_2, win, [], [], 1/Ts); [p_ht_d, ~] = pwelch(ht.d, win, [], [], 1/Ts); [p_ht_acc1, ~] = pwelch(ht.acc_1, win, [], [], 1/Ts); [p_ht_acc2, ~] = pwelch(ht.acc_2, win, [], [], 1/Ts); [p_ht_geo1, ~] = pwelch(ht.geo_1, win, [], [], 1/Ts); [p_ht_geo2, ~] = pwelch(ht.geo_2, win, [], [], 1/Ts); [p_ht_fmeas, ~] = pwelch(ht.f_meas, win, [], [], 1/Ts); figure; hold on; set(gca, 'ColorOrderIndex', 1); plot(f, p_ht_acc1, 'DisplayName', 'Huddle Test'); set(gca, 'ColorOrderIndex', 1); plot(f, p_ht_acc2, 'HandleVisibility', 'off'); set(gca, 'ColorOrderIndex', 2); plot(f, p_id_acc1, 'DisplayName', 'Identification Test'); set(gca, 'ColorOrderIndex', 2); plot(f, p_id_acc2, 'HandleVisibility', 'off'); hold off; set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('PSD [$V^2/Hz$]'); xlabel('Frequency [Hz]'); title('Huddle Test - Accelerometers') legend('location', 'northwest'); xlim([5e-1, 5e3]); ylim([1e-10, 1e-2]) % #+name: fig:comp_psd_huddle_test_identification_acc % #+caption: Comparison of the PSD of the measured motion during the Huddle test and during the identification % #+RESULTS: % [[file:figs/comp_psd_huddle_test_identification_acc.png]] figure; hold on; set(gca, 'ColorOrderIndex', 1); plot(f, p_ht_geo1, 'DisplayName', 'Huddle Test'); set(gca, 'ColorOrderIndex', 1); plot(f, p_ht_geo2, 'HandleVisibility', 'off'); set(gca, 'ColorOrderIndex', 2); plot(f, p_id_geo1, 'DisplayName', 'Identification Test'); set(gca, 'ColorOrderIndex', 2); plot(f, p_id_geo2, 'HandleVisibility', 'off'); hold off; set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('PSD [$V^2/Hz$]'); xlabel('Frequency [Hz]'); title('Huddle Test - Geophones') legend('location', 'northeast'); xlim([1e-1, 5e3]); ylim([1e-11, 1e-4]); % Compute transfer functions % The transfer functions from the motion as measured by the interferometer (and that should represent the absolute motion of the mass) to the inertial sensors are estimated: [tf_acc1_est, f] = tfestimate(id.d, id.acc_1, win, [], [], 1/Ts); [co_acc1_est, ~] = mscohere( id.d, id.acc_1, win, [], [], 1/Ts); [tf_acc2_est, ~] = tfestimate(id.d, id.acc_2, win, [], [], 1/Ts); [co_acc2_est, ~] = mscohere( id.d, id.acc_2, win, [], [], 1/Ts); [tf_geo1_est, ~] = tfestimate(id.d, id.geo_1, win, [], [], 1/Ts); [co_geo1_est, ~] = mscohere( id.d, id.geo_1, win, [], [], 1/Ts); [tf_geo2_est, ~] = tfestimate(id.d, id.geo_2, win, [], [], 1/Ts); [co_geo2_est, ~] = mscohere( id.d, id.geo_2, win, [], [], 1/Ts); % The obtained coherence are shown in Figure [[fig:id_sensor_dynamics_coherence]]. figure; hold on; set(gca, 'ColorOrderIndex', 1); plot(f, co_acc1_est, '-', 'DisplayName', 'Accelerometer') set(gca, 'ColorOrderIndex', 1); plot(f, co_acc2_est, '-', 'HandleVisibility', 'off') set(gca, 'ColorOrderIndex', 2); plot(f, co_geo1_est, '-', 'DisplayName', 'Geophone') set(gca, 'ColorOrderIndex', 2); plot(f, co_geo2_est, '-', 'HandleVisibility', 'off') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Coherence'); xlabel('Frequency [Hz]'); hold off; xlim([2, 2e3]); ylim([0, 1]) legend(); % #+name: fig:id_sensor_dynamics_coherence % #+caption: Coherence for the estimation of the sensor dynamics % #+RESULTS: % [[file:figs/id_sensor_dynamics_coherence.png]] % We also make a simplified model of the inertial sensors to be compared with the identified dynamics. G_acc = 1/(1 + s/2/pi/2500); % [V/(m/s2)] G_geo = -1200*s^2/(s^2 + 2*0.7*2*pi*2*s + (2*pi*2)^2); % [[V/(m/s)] % The model and identified dynamics show good agreement (Figures [[fig:id_sensor_dynamics_accelerometers]] and [[fig:id_sensor_dynamics_geophones]].) figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(tf_acc1_est./(1i*2*pi*f).^2), '.') plot(f, abs(tf_acc2_est./(1i*2*pi*f).^2), '.') plot(f, abs(squeeze(freqresp(G_acc, f, 'Hz'))), 'k-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude $\left[\frac{V}{m/s^2}\right]$'); set(gca, 'XTickLabel',[]); hold off; ax2 = nexttile; hold on; plot(f, 180/pi*angle(tf_acc1_est./(1i*2*pi*f).^2), '.') plot(f, 180/pi*angle(tf_acc2_est./(1i*2*pi*f).^2), '.') plot(f, 180/pi*angle(squeeze(freqresp(G_acc, f, 'Hz'))), 'k-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2], 'x'); xlim([2, 2e3]); % #+name: fig:id_sensor_dynamics_accelerometers % #+caption: Identified dynamics of the accelerometers % #+RESULTS: % [[file:figs/id_sensor_dynamics_accelerometers.png]] figure; tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(tf_geo1_est./(1i*2*pi*f)), '.') plot(f, abs(tf_geo2_est./(1i*2*pi*f)), '.') plot(f, abs(squeeze(freqresp(G_geo, f, 'Hz'))), 'k-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude $\left[\frac{V}{m/s}\right]$'); set(gca, 'XTickLabel',[]); hold off; ax2 = nexttile; hold on; plot(f, 180/pi*angle(tf_geo1_est./(1i*2*pi*f)), '.') plot(f, 180/pi*angle(tf_geo2_est./(1i*2*pi*f)), '.') plot(f, 180/pi*angle(squeeze(freqresp(G_geo, f, 'Hz'))), 'k-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2], 'x'); xlim([0.5, 2e3]);