diff --git a/index.org b/index.org index 859c9fd..7b86462 100644 --- a/index.org +++ b/index.org @@ -86,7 +86,7 @@ This takes into account the sensibility of the sensor and possible integration t #+begin_src matlab acc_1 = lsim(inv(G_acc), acc_1, t); acc_2 = lsim(inv(G_acc), acc_2, t); - geo_1 = 1e2*lsim(inv(G_geo), geo_1, t); + geo_1 = lsim(inv(G_geo), geo_1, t); geo_2 = lsim(inv(G_geo), geo_2, t); #+end_src diff --git a/mat/huddle_test.mat b/mat/huddle_test.mat index f947643..5c80fad 100644 Binary files a/mat/huddle_test.mat and b/mat/huddle_test.mat differ diff --git a/mat/identification_chirp_40_400.mat b/mat/identification_chirp_40_400.mat new file mode 100644 index 0000000..95ec0e9 Binary files /dev/null and b/mat/identification_chirp_40_400.mat differ diff --git a/mat/identification_chirp_40_400_iff.mat b/mat/identification_chirp_40_400_iff.mat new file mode 100644 index 0000000..e522666 Binary files /dev/null and b/mat/identification_chirp_40_400_iff.mat differ diff --git a/mat/identification_noise_iff.mat b/mat/identification_noise_iff.mat new file mode 100644 index 0000000..d65fa91 Binary files /dev/null and b/mat/identification_noise_iff.mat differ diff --git a/runtest.m b/runtest.m index 6044317..eec41cd 100644 --- a/runtest.m +++ b/runtest.m @@ -8,53 +8,85 @@ close(f); %% Convert the Data data = SimulinkRealTime.utils.getFileScopeData('data/apa95ml.dat').data; -acc_1 = data(:, 1); -acc_2 = data(:, 2); -geo_1 = data(:, 3); -geo_2 = data(:, 4); -t = data(:, 5); +d = data(:, 1); +acc_1 = data(:, 2); +acc_2 = data(:, 3); +geo_1 = data(:, 4); +geo_2 = data(:, 5); +u = data(:, 6); +f_meas = data(:, 7); +t = data(:, 8); -save('./mat/huddle_test.mat', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 't'); +save('./mat/identification_noise_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't'); %% -figure; -subplot(1,2,1); -plot(t, u) -subplot(1,2,2); -plot(t, y) - -%% -load('../mat/apa95ml_5kg_10V.mat', 'u', 't', 'y'); -ht = load('../mat/huddle_test.mat', 'u', 't', 'y'); -u = u - mean(u); -y = y - mean(y); - -%% -[pxx, f] = pwelch(y, win, [], [], 1/Ts); -[pht, ~] = pwelch(ht.y, win, [], [], 1/Ts); - -figure; - -hold on; -plot(f, pxx); -plot(f, pht); -hold off; -set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); -ylabel('PSD'); xlabel('Frequency [Hz]'); +d = detrend(d, 0); +acc_1 = detrend(acc_1, 0); +acc_2 = detrend(acc_2, 0); +geo_1 = detrend(geo_1, 0); +geo_2 = detrend(geo_2, 0); +u = detrend(u, 0); %% run setup; -win = hann(ceil(0.1/Ts)); +win = hann(ceil(10/Ts)); -[tf_est, f] = tfestimate(u, y, win, [], [], 1/Ts); -[co_est, ~] = mscohere(u, y, win, [], [], 1/Ts); +[p_d, f] = pwelch(d, win, [], [], 1/Ts); +[p_acc1, ~] = pwelch(acc_1, win, [], [], 1/Ts); +[p_acc2, ~] = pwelch(acc_2, win, [], [], 1/Ts); +[p_geo1, ~] = pwelch(geo_1, win, [], [], 1/Ts); +[p_geo2, ~] = pwelch(geo_2, win, [], [], 1/Ts); + +%% +figure; +hold on; +plot(f, p_acc1); +plot(f, p_acc2); +hold off; +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('PSD [$(m/s^2)^2/Hz$]'); xlabel('Frequency [Hz]'); + +figure; +hold on; +plot(f, p_geo1); +plot(f, p_geo2); +hold off; +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('PSD [$(m/s)^2/Hz$]'); xlabel('Frequency [Hz]'); + +figure; +hold on; +plot(f, p_d); +hold off; +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('PSD [$m^2/Hz$]'); xlabel('Frequency [Hz]'); + +%% +run setup; + +win = hann(ceil(10/Ts)); + +[tf_geo1_est, f] = tfestimate(d, geo_1, win, [], [], 1/Ts); +[co_geo1_est, ~] = mscohere(d, geo_1, win, [], [], 1/Ts); + +[tf_geo2_est, ~] = tfestimate(d, geo_2, win, [], [], 1/Ts); +[co_geo2_est, ~] = mscohere(d, geo_2, win, [], [], 1/Ts); + +[tf_acc1_est, ~] = tfestimate(d, acc_1, win, [], [], 1/Ts); +[co_acc1_est, ~] = mscohere(d, acc_1, win, [], [], 1/Ts); + +[tf_acc2_est, ~] = tfestimate(d, acc_2, win, [], [], 1/Ts); +[co_acc2_est, ~] = mscohere(d, acc_2, win, [], [], 1/Ts); %% figure; hold on; -plot(f, co_est, 'k-') +plot(f, co_geo1_est, '-') +plot(f, co_geo2_est, '-') +plot(f, co_acc1_est, '-') +plot(f, co_acc2_est, '-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Coherence'); xlabel('Frequency [Hz]'); hold off; @@ -63,51 +95,61 @@ hold off; figure; ax1 = subplot(2, 1, 1); hold on; -plot(f, abs(tf_est), 'k-', 'DisplayName', 'Identified') +plot(f, abs(tf_geo1_est), '-', 'DisplayName', 'Geo1') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); hold off; ax2 = subplot(2, 1, 2); hold on; -plot(f, 180/pi*unwrap(angle(-tf_est)), 'k-') +plot(f, 180/pi*unwrap(angle(tf_geo1_est)), '-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; linkaxes([ax1,ax2], 'x'); -xlim([10, 5000]); - -%% -win = hann(ceil(0.2/Ts)); - -[tf_est, f] = tfestimate(u, v, win, [], [], 1/Ts); -[co_est, ~] = mscohere(u, v, win, [], [], 1/Ts); - -%% -figure; - -hold on; -plot(f, co_est, 'k-') -set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); -ylabel('Coherence'); xlabel('Frequency [Hz]'); -hold off; %% figure; ax1 = subplot(2, 1, 1); hold on; -plot(f, abs(tf_est), 'k-', 'DisplayName', 'Identified') +plot(f, abs(tf_acc1_est), '-', 'DisplayName', 'Acc1') +plot(f, abs(tf_acc2_est), '-', 'DisplayName', 'Acc2') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); ylabel('Amplitude'); xlabel('Frequency [Hz]'); hold off; ax2 = subplot(2, 1, 2); hold on; -plot(f, 180/pi*unwrap(angle(-tf_est)), 'k-') +plot(f, 180/pi*unwrap(angle(tf_acc1_est)), '-') +plot(f, 180/pi*unwrap(angle(tf_acc2_est)), '-') set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); ylabel('Phase'); xlabel('Frequency [Hz]'); hold off; linkaxes([ax1,ax2], 'x'); -xlim([10, 5000]); + +%% +win = hann(ceil(10/Ts)); + +[p_acc_1, f] = pwelch(acc_1, win, [], [], 1/Ts); +[co_acc12, ~] = mscohere(acc_1, acc_2, win, [], [], 1/Ts); + +[p_geo_1, ~] = pwelch(geo_1, win, [], [], 1/Ts); +[co_geo12, ~] = mscohere(geo_1, geo_2, win, [], [], 1/Ts); + +p_acc_N = p_acc_1.*(1 - co_acc12); +p_geo_N = p_geo_1.*(1 - co_geo12); + + +figure; +hold on; +plot(f, sqrt(p_acc_N)./abs(tf_acc1_est)); +plot(f, sqrt(p_geo_N)./abs(tf_geo1_est)); +hold off; +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('PSD'); xlabel('Frequency [Hz]'); + + + + diff --git a/sensor_fusion_analysis.m b/sensor_fusion_analysis.m new file mode 100644 index 0000000..8aed01d --- /dev/null +++ b/sensor_fusion_analysis.m @@ -0,0 +1,421 @@ + +%% Huddle Test +ht = load('./mat/huddle_test.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't'); + +% Detrend Data +ht.d = detrend(ht.d, 0); +ht.acc_1 = detrend(ht.acc_1, 0); +ht.acc_2 = detrend(ht.acc_2, 0); +ht.geo_1 = detrend(ht.geo_1, 0); +ht.geo_2 = detrend(ht.geo_2, 0); +ht.f_meas = detrend(ht.f_meas, 0); + +% Compute PSD +run setup; + +win = hann(ceil(10/Ts)); + +[p_d, f] = pwelch(ht.d, win, [], [], 1/Ts); +[p_acc1, ~] = pwelch(ht.acc_1, win, [], [], 1/Ts); +[p_acc2, ~] = pwelch(ht.acc_2, win, [], [], 1/Ts); +[p_geo1, ~] = pwelch(ht.geo_1, win, [], [], 1/Ts); +[p_geo2, ~] = pwelch(ht.geo_2, win, [], [], 1/Ts); +[p_fmeas, ~] = pwelch(ht.f_meas, win, [], [], 1/Ts); + +% Plot PSD +figure; +hold on; +plot(f, p_acc1); +plot(f, p_acc2); +hold off; +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('PSD [$V^2/Hz$]'); xlabel('Frequency [Hz]'); +title('Huddle Test - Accelerometers') + +figure; +hold on; +plot(f, p_geo1); +plot(f, p_geo2); +hold off; +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('PSD [$V^2/Hz$]'); xlabel('Frequency [Hz]'); +title('Huddle Test - Geophones') + +figure; +hold on; +plot(f, p_d); +hold off; +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('PSD [$m^2/Hz$]'); xlabel('Frequency [Hz]'); +title('Huddle Test - Interferometers') + +figure; +hold on; +plot(f, p_fmeas); +hold off; +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('PSD [$V^2/Hz$]'); xlabel('Frequency [Hz]'); +title('Huddle Test - Force Sensor') + +%% Accelerometer and Geophone Models +% Accelerometer used: https://www.pcb.com/products?model=393B05 +% Geophone used: L22 https://www.sercel.com/products/Lists/ProductSpecification/Geophones_brochure_Sercel_EN.pdf + +G_acc = 1/(1 + s/2/pi/2500); % [V/(m/s2)] +G_geo = 120*s^2/(s^2 + 2*0.7*2*pi*2*s + (2*pi*2)^2); % [[V/(m/s)] + +% PSD of intertial sensors in [m^2/Hz] +figure; +hold on; +set(gca, 'ColorOrderIndex', 1); +plot(f, p_acc1./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))), ... + 'DisplayName', 'Accelerometer'); +set(gca, 'ColorOrderIndex', 1); +plot(f, p_acc2./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))), ... + 'HandleVisibility', 'off'); +set(gca, 'ColorOrderIndex', 2); +plot(f, p_geo1./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))), ... + 'DisplayName', 'Geophone'); +set(gca, 'ColorOrderIndex', 2); +plot(f, p_geo2./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))), ... + 'HandleVisibility', 'off'); +set(gca, 'ColorOrderIndex', 3); +plot(f, p_d, 'DisplayName', 'Interferometer'); +hold off; +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('PSD [$m^2/Hz$]'); xlabel('Frequency [Hz]'); +title('Huddle Test') +legend(); + +%% Compare Theoretical model with identified one +id_ol = load('./mat/identification_chirp_40_400.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't'); + +% Detrend Data +id_ol.d = detrend(id_ol.d, 0); +id_ol.acc_1 = detrend(id_ol.acc_1, 0); +id_ol.acc_2 = detrend(id_ol.acc_2, 0); +id_ol.geo_1 = detrend(id_ol.geo_1, 0); +id_ol.geo_2 = detrend(id_ol.geo_2, 0); +id_ol.f_meas = detrend(id_ol.f_meas, 0); +id_ol.u = detrend(id_ol.u, 0); + +% Identification Parameters +run setup; +win = hann(ceil(10/Ts)); + +% IFF Plant +[tf_fmeas_est, f] = tfestimate(id_ol.u, id_ol.f_meas, win, [], [], 1/Ts); % [V/m] +[co_fmeas_est, ~] = mscohere(id_ol.u, id_ol.f_meas, win, [], [], 1/Ts); + +figure; +ax1 = subplot(2, 1, 1); +hold on; +plot(f, abs(tf_fmeas_est), '-') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('Amplitude'); xlabel('Frequency [Hz]'); +hold off; + +ax2 = subplot(2, 1, 2); +hold on; +plot(f, 180/pi*unwrap(angle(tf_fmeas_est)), '-') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); +ylabel('Phase'); xlabel('Frequency [Hz]'); +hold off; + +linkaxes([ax1,ax2], 'x'); +xlim([40, 400]); + +% Geophones +[tf_geo1_est, ~] = tfestimate(id_ol.d, id_ol.geo_1, win, [], [], 1/Ts); % [V/m] +[co_geo1_est, ~] = mscohere(id_ol.d, id_ol.geo_1, win, [], [], 1/Ts); + +[tf_geo2_est, ~] = tfestimate(id_ol.d, id_ol.geo_2, win, [], [], 1/Ts); % [V/m] +[co_geo2_est, ~] = mscohere(id_ol.d, id_ol.geo_2, win, [], [], 1/Ts); + +figure; +ax1 = subplot(2, 1, 1); +hold on; +set(gca, 'ColorOrderIndex', 1); +plot(f, abs(tf_geo1_est), '.') +set(gca, 'ColorOrderIndex', 1); +plot(f, abs(tf_geo2_est), '.') +plot(f, abs(squeeze(freqresp(G_geo, f, 'Hz')).*(1i*2*pi*f)), 'k-') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('Amplitude'); xlabel('Frequency [Hz]'); +hold off; + +ax2 = subplot(2, 1, 2); +hold on; +set(gca, 'ColorOrderIndex', 1); +plot(f, 180/pi*angle(tf_geo1_est), '.') +set(gca, 'ColorOrderIndex', 1); +plot(f, 180/pi*angle(tf_geo2_est), '.') +plot(f, 180/pi*angle(-squeeze(freqresp(G_geo, f, 'Hz')).*(1i*2*pi*f)), 'k-') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); +ylabel('Phase'); xlabel('Frequency [Hz]'); +hold off; + +linkaxes([ax1,ax2], 'x'); +xlim([40, 400]); + +% Accelerometers +[tf_acc1_est, ~] = tfestimate(id_ol.d, id_ol.acc_1, win, [], [], 1/Ts); % [V/m] +[co_acc1_est, ~] = mscohere(id_ol.d, id_ol.acc_1, win, [], [], 1/Ts); + +[tf_acc2_est, ~] = tfestimate(id_ol.d, id_ol.acc_2, win, [], [], 1/Ts); % [V/m] +[co_acc2_est, ~] = mscohere(id_ol.d, id_ol.acc_2, win, [], [], 1/Ts); + +figure; +ax1 = subplot(2, 1, 1); +hold on; +set(gca, 'ColorOrderIndex', 1); +plot(f, abs(tf_acc1_est), '.') +set(gca, 'ColorOrderIndex', 1); +plot(f, abs(tf_acc2_est), '.') +plot(f, abs(squeeze(freqresp(G_acc, f, 'Hz')).*(1i*2*pi*f).^2), 'k-') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('Amplitude'); xlabel('Frequency [Hz]'); +hold off; + +ax2 = subplot(2, 1, 2); +hold on; +set(gca, 'ColorOrderIndex', 1); +plot(f, 180/pi*angle(tf_acc1_est), '.') +set(gca, 'ColorOrderIndex', 1); +plot(f, 180/pi*angle(tf_acc2_est), '.') +plot(f, 180/pi*angle(squeeze(freqresp(G_acc, f, 'Hz')).*(1i*2*pi*f).^2), 'k-') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); +ylabel('Phase'); xlabel('Frequency [Hz]'); +hold off; + +linkaxes([ax1,ax2], 'x'); +xlim([40, 400]); + +%% IFF development +[tf_fmeas_est, f] = tfestimate(id_ol.u, id_ol.f_meas, win, [], [], 1/Ts); % [V/m] +[co_fmeas_est, ~] = mscohere(id_ol.u, id_ol.f_meas, win, [], [], 1/Ts); + +% Model +wz = 2*pi*103; +xi_z = 0.01; +wp = 2*pi*237; +xi_p = 0.015; + +Giff = -20*(s^2 + 2*xi_z*s*wz + wz^2)/(s^2 + 2*xi_p*s*wp + wp^2); + +% Comparison model and identification +figure; +ax1 = subplot(2, 1, 1); +hold on; +plot(f, abs(tf_fmeas_est), '.') +plot(f, abs(squeeze(freqresp(Giff, f, 'Hz'))), 'k-') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('Amplitude'); xlabel('Frequency [Hz]'); +hold off; + +ax2 = subplot(2, 1, 2); +hold on; +plot(f, 180/pi*angle(tf_fmeas_est), '.') +plot(f, 180/pi*angle(squeeze(freqresp(Giff, f, 'Hz'))), 'k-') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); +ylabel('Phase'); xlabel('Frequency [Hz]'); +hold off; + +linkaxes([ax1,ax2], 'x'); +xlim([40, 400]); + +% Root Locus +gains = logspace(0, 5, 1000); + +figure; +hold on; +plot(real(pole(Giff)), imag(pole(Giff)), 'kx'); +plot(real(tzero(Giff)), imag(tzero(Giff)), 'ko'); +for i = 1:length(gains) + cl_poles = pole(feedback(Giff, -gains(i)/(s + 2*pi*2))); + plot(real(cl_poles), imag(cl_poles), 'k.'); +end +ylim([0, 1800]); +xlim([-1600,200]); +xlabel('Real Part') +ylabel('Imaginary Part') +axis square + +% Optimal Controller +Kiff_opt = -110/(s + 2*pi*2); + +%% New identification +id_ol = load('./mat/identification_chirp_40_400.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't'); +id_cl = load('./mat/identification_chirp_40_400_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't'); + +% Used controller +Kiff = -110/(s + 2*pi*2); + +[tf_G_ol_est, f] = tfestimate(id_ol.u, id_ol.d, win, [], [], 1/Ts); +[co_G_ol_est, ~] = mscohere(id_ol.u, id_ol.d, win, [], [], 1/Ts); +[tf_G_cl_est, ~] = tfestimate(id_cl.u, id_cl.d, win, [], [], 1/Ts); +[co_G_cl_est, ~] = mscohere(id_cl.u, id_cl.d, win, [], [], 1/Ts); + +figure; +hold on; +plot(f, co_G_ol_est, '-') +plot(f, co_G_cl_est, '-') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); +ylabel('Coherence'); xlabel('Frequency [Hz]'); +hold off; +xlim([40, 400]); ylim([0, 1]) + +% Comparison model and identification +figure; +ax1 = subplot(2, 1, 1); +hold on; +plot(f, abs(tf_G_ol_est), '-') +plot(f, abs(tf_G_cl_est), '-') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('Amplitude'); xlabel('Frequency [Hz]'); +hold off; + +ax2 = subplot(2, 1, 2); +hold on; +plot(f, 180/pi*angle(tf_G_ol_est), '-') +plot(f, 180/pi*angle(tf_G_cl_est), '-') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); +ylabel('Phase'); xlabel('Frequency [Hz]'); +hold off; + +linkaxes([ax1,ax2], 'x'); +xlim([40, 400]); + +%% Estimation of the inertial sensor transfer functions +id = load('./mat/identification_noise_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't'); +ht = load('./mat/huddle_test.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't'); + +% Compare PSD +run setup; +win = hann(ceil(1/Ts)); + +[p_id_d, f] = pwelch(id.d, win, [], [], 1/Ts); +[p_id_acc1, ~] = pwelch(id.acc_1, win, [], [], 1/Ts); +[p_id_acc2, ~] = pwelch(id.acc_2, win, [], [], 1/Ts); +[p_id_geo1, ~] = pwelch(id.geo_1, win, [], [], 1/Ts); +[p_id_geo2, ~] = pwelch(id.geo_2, win, [], [], 1/Ts); +[p_id_fmeas, ~] = pwelch(id.f_meas, win, [], [], 1/Ts); + +[p_ht_d, ~] = pwelch(ht.d, win, [], [], 1/Ts); +[p_ht_acc1, ~] = pwelch(ht.acc_1, win, [], [], 1/Ts); +[p_ht_acc2, ~] = pwelch(ht.acc_2, win, [], [], 1/Ts); +[p_ht_geo1, ~] = pwelch(ht.geo_1, win, [], [], 1/Ts); +[p_ht_geo2, ~] = pwelch(ht.geo_2, win, [], [], 1/Ts); +[p_ht_fmeas, ~] = pwelch(ht.f_meas, win, [], [], 1/Ts); + +figure; +hold on; +set(gca, 'ColorOrderIndex', 1); +plot(f, p_ht_acc1, 'DisplayName', 'Huddle Test'); +set(gca, 'ColorOrderIndex', 1); +plot(f, p_ht_acc2, 'HandleVisibility', 'off'); +set(gca, 'ColorOrderIndex', 2); +plot(f, p_id_acc1, 'DisplayName', 'Identification Test'); +set(gca, 'ColorOrderIndex', 2); +plot(f, p_id_acc2, 'HandleVisibility', 'off'); +hold off; +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('PSD [$V^2/Hz$]'); xlabel('Frequency [Hz]'); +title('Huddle Test - Accelerometers') +legend(); + +figure; +hold on; +set(gca, 'ColorOrderIndex', 1); +plot(f, p_ht_geo1, 'DisplayName', 'Huddle Test'); +set(gca, 'ColorOrderIndex', 1); +plot(f, p_ht_geo2, 'HandleVisibility', 'off'); +set(gca, 'ColorOrderIndex', 2); +plot(f, p_id_geo1, 'DisplayName', 'Identification Test'); +set(gca, 'ColorOrderIndex', 2); +plot(f, p_id_geo2, 'HandleVisibility', 'off'); +hold off; +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('PSD [$V^2/Hz$]'); xlabel('Frequency [Hz]'); +title('Huddle Test - Geophones') +legend(); + +figure; +hold on; +plot(f, p_ht_d, 'DisplayName', 'Huddle Test'); +plot(f, p_id_d, 'DisplayName', 'Identification Test'); +hold off; +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('PSD [$m^2/Hz$]'); xlabel('Frequency [Hz]'); +title('Huddle Test - Interferometers') +legend(); + +% tf and coh computation +[tf_acc1_est, f] = tfestimate(id.d, id.acc_1, win, [], [], 1/Ts); +[co_acc1_est, ~] = mscohere(id.d, id.acc_1, win, [], [], 1/Ts); +[tf_acc2_est, ~] = tfestimate(id.d, id.acc_2, win, [], [], 1/Ts); +[co_acc2_est, ~] = mscohere(id.d, id.acc_2, win, [], [], 1/Ts); + +[tf_geo1_est, ~] = tfestimate(id.d, id.geo_1, win, [], [], 1/Ts); +[co_geo1_est, ~] = mscohere(id.d, id.geo_1, win, [], [], 1/Ts); +[tf_geo2_est, ~] = tfestimate(id.d, id.geo_2, win, [], [], 1/Ts); +[co_geo2_est, ~] = mscohere(id.d, id.geo_2, win, [], [], 1/Ts); + +% Coherence +figure; +hold on; +set(gca, 'ColorOrderIndex', 1); +plot(f, co_acc1_est, '-', 'DisplayName', 'Accelerometer') +set(gca, 'ColorOrderIndex', 1); +plot(f, co_acc2_est, '-', 'HandleVisibility', 'off') +set(gca, 'ColorOrderIndex', 2); +plot(f, co_geo1_est, '-', 'DisplayName', 'Geophone') +set(gca, 'ColorOrderIndex', 2); +plot(f, co_geo2_est, '-', 'HandleVisibility', 'off') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); +ylabel('Coherence'); xlabel('Frequency [Hz]'); +hold off; +xlim([2, 2e3]); ylim([0, 1]) +legend(); + +% Transfer Functions +figure; +ax1 = subplot(2, 1, 1); +hold on; +plot(f, abs(tf_acc1_est), '-') +plot(f, abs(tf_acc2_est), '-') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('Amplitude'); xlabel('Frequency [Hz]'); +hold off; + +ax2 = subplot(2, 1, 2); +hold on; +plot(f, 180/pi*angle(tf_acc1_est), '-') +plot(f, 180/pi*angle(tf_acc2_est), '-') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); +ylabel('Phase'); xlabel('Frequency [Hz]'); +hold off; + +linkaxes([ax1,ax2], 'x'); +xlim([2, 2e3]); + + +figure; +ax1 = subplot(2, 1, 1); +hold on; +plot(f, abs(tf_geo1_est), '-') +plot(f, abs(tf_geo2_est), '-') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); +ylabel('Amplitude'); xlabel('Frequency [Hz]'); +hold off; + +ax2 = subplot(2, 1, 2); +hold on; +plot(f, 180/pi*angle(tf_geo1_est), '-') +plot(f, 180/pi*angle(tf_geo2_est), '-') +set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin'); +ylabel('Phase'); xlabel('Frequency [Hz]'); +hold off; + +linkaxes([ax1,ax2], 'x'); +xlim([2, 2e3]); diff --git a/sensor_fusion_test_bench.slx b/sensor_fusion_test_bench.slx index 47c3066..bdc03d4 100644 Binary files a/sensor_fusion_test_bench.slx and b/sensor_fusion_test_bench.slx differ diff --git a/setup.m b/setup.m index a292fe7..9680842 100644 --- a/setup.m +++ b/setup.m @@ -1,6 +1,18 @@ +%% s = tf('s'); -Ts = 1e-4; +Ts = 1e-4; % [s] -Glpf = 1/(1 + s/2/pi/500); +%% Pre-Filter +% Glpf = 1/(1 + s/2/pi/2e3); +Glpf = 1/(1 + s/2/pi/50); % Used to excite with constant velocity +Gz = c2d(Glpf, Ts, 'tustin'); -Gz = c2d(Glpf, Ts, 'tustin'); \ No newline at end of file +%% IFF Controller +Kiff = -1/(s + 2*pi*2); +Kiff = c2d(Kiff, Ts, 'tustin'); + +%% Excitation Signal +Tsim = 180; % Excitation time + Measurement time [s] + +t = 0:Ts:Tsim; +u_exc = timeseries(chirp(t, 0.1, Tsim, 1e3, 'logarithmic'), t);