#+TITLE: Research Pages :DRAWER: #+OPTIONS: toc:nil #+OPTIONS: html-postamble:nil #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: :END: Welcome to my research pages. * Add a submodule :noexport: #+begin_src emacs-lisp :results none (let* ((url (read-string "Add submodule (remote url) ")) (url-match (string-match "\\([^./]+\\)\\(\\.git\\)?$" url)) (path (match-string 1 url)) (path (read-string "Submodule directory " path))) (shell-command (concat "git submodule add " url " " path)) (shell-command (concat "git submodule deinit -f " path))) #+end_src * Change submodule url :noexport: First delete the submodule using #+begin_src bash git rm --cache submodule-name #+end_src Then add a new submodule with the updated url. * Update CSS and JS :noexport: #+begin_src bash :results none npm run js #+end_src #+begin_src bash :results none npm run scss #+end_src * Papers ** Conference Papers - Dehaeze, T., Mattenet, M. M., & Collette, C., *Sample Stabilization For Tomography Experiments In Presence Of Large Plant Uncertainty*, In MEDSI'18 (pp. 153–157) (2018). Geneva, Switzerland: JACoW Publishing. ([[file:dehaeze18_sampl_stabil_for_tomog_exper/index.org][link]]) - Dehaeze, T., Vermat, M., & Christophe, C., *Complementary filters shaping using $H_\infty$ synthesis*, In 7th International Conference on Control, Mechatronics and Automation (ICCMA) (pp. 459–464) (2019). ([[file:dehaeze19_desig_compl_filte/index.org][link]]) - Dehaeze, T., & Collette, C., *Active damping of rotating platforms using Integral Force Feedback*, In Proceedings of the International Conference on Modal Analysis Noise and Vibration Engineering (ISMA) (2020). ([[file:dehaeze20_activ_dampin_rotat_platf_integ_force_feedb/index.org][link]]) ** Journal Papers - Verma, M., Dehaeze, T., Zhao, G., Watchi, J., & Collette, C., *Virtual sensor fusion for high precision control, Mechanical Systems and Signal Processing*, 150, 107241 (2020). http://dx.doi.org/10.1016/j.ymssp.2020.107241 ([[file:personnal-papers/verma20_virtual_sensor_fusion_high_precis_contr.pdf][pdf]]) - Verma, M., Lafarga, V., Dehaeze, T., & Collette, C., *Multi-degree of freedom isolation system with high frequency roll-off for drone camera stabilization*, IEEE Access, (2020). http://dx.doi.org/10.1109/ACCESS.2020.3027066 ([[file:personnal-papers/verma20_multi_degree_freed_isolat_system.pdf][pdf]]) * Work in Progress :noexport: ** Journal Papers - [[file:dehaeze20_optim_robus_compl_filte/index.org][Robust and Optimal Sensor Fusion]] - [[file:dehaeze20_virtu_senso_fusio/index.org][Virtual Sensor Fusion]] - [[file:svd-control/index.org][SVD Control - Simscape Models]] * Useful Pages / Tutorials ** General Mechatronics [[file:spectral-analysis/index.org][Spectral Analysis]] #+begin_quote Basics of spectral analysis are presented alongside the Matlab codes. This includes: - power spectral density - cumulative power spectrum - noise budgeting - ... #+end_quote [[file:filters-matlab-bank/index.org][Bank of Filters using matlab]] #+begin_quote Several types of linear filters (low pass, high pass, notch, lead, etc.) are presented with the corresponding Matlab code. #+end_quote ** System Modeling using Simscape [[file:simscape-fem/index.org][Finite Element Models with Simscape]] #+begin_quote Finite Element Models (FEM) can be included into Simscape Multi-Body models. This document presents how to do so. #+end_quote [[file:simscape-gravity/index.org][Manage Gravity within Simscape]] #+begin_quote Gravity can add some problems in multi-body simscape models: at the beginning of the simulation, some sag will be experience that may be unwanted. In order to start the simulation at equilibrium, few measured can be employed that are described in this document. #+end_quote * Test Benches / Experiments ** Intrumentation Related [[file:test-bench-piezo-amplifiers/index.org][Voltage Amplifiers for Piezoelectric Actuators]] #+begin_quote Voltage amplifiers for capacitive loads (piezoelectric actuators) are measured in term of dynamics from input voltage to output voltage. Their output impedance are also measured. #+end_quote [[file:attocube-test-bench/index.org][Attocube]] #+begin_quote The Attocube (a fiber based interferometer) is tested. Its noise characteristics as well as non-linearities are measured. #+end_quote ** Amplified Piezoelecric Actuator [[file:test-bench-apa/index.org][Amplified Piezoelectric Actuator - Test bench and Finite Element Model]] #+begin_quote A test bench is used to characterise the performances of an Amplified Piezoelectric Actuator (APA). The dynamics of the system is identified and compared with a Finite Element Model (FEM). #+end_quote [[file:encoder-test-bench/index.org][Encoder in parallel with an Amplified Piezoelectric Actuator]] #+begin_quote An encoder is fixed in parallel with an amplified piezoelectric actuator. The transfer function from the actuator to the motions measured by the encoder is identified. #+end_quote [[file:test-bench-force-sensor/index.org][Piezoelectric Stack as Force Sensor]] #+begin_quote A part of a piezoelectric stack can be used as a force sensor. Then, the force sensors is collocated with the part of the stack used as an actuator and Integral Force Feedback control strategy can be used to add damping in the system. This is performed on an Amplified Piezoelectric Actuator #+end_quote [[file:sensor-fusion-test-bench/index.org][Sensor Fusion of Inertial Sensors]] #+begin_quote A geophone and a accelerometer are experimentally fused together using complementary filters. The goal is to form a /super sensor/ that has better noise characteristics than the individual sensors. #+end_quote * PhD Project - Nano Active Stabilization System [[file:nass-report-2020/index.org][NASS - Report 2020]] #+begin_quote General report on the NASS project made in 2020. #+end_quote [[file:nass-micro-station-measurements/index.org][NASS - Micro Station Measurements]] #+begin_quote This document gathers all the measurements made on the Micro-Station. #+end_quote [[file:nass-simscape/docs/index.org][NASS - Simscape Model]] #+begin_quote This document presents the Simscape model used to represent the micro-station as well as the Nano Active Stabilization System. #+end_quote [[file:nass-fem/index.org][NASS - Finite Element Models]] #+begin_quote Finite Element Models of the nano-hexapod are developed and used with Simscape to perform dynamics meaurements. In this document, models of Amplified Piezoelectric Actuators, Flexible Joints, and Entire Stewart platform's strut are developed and tested. #+end_quote [[file:nass-metrology-test-bench/index.org][NASS - Metrology Concept 1]] #+begin_quote Presentation of the first metrology concept for the NASS. First experimental results are presented. #+end_quote Test and Mounting procedure: 1. [[file:test-bench-pd200/index.org][Voltage Amplifier PD200]] 2. Encoder Renishaw Vionic 3. [[file:test-bench-nass-flexible-joints/index.org][Flexible Joints]] 4. [[file:test-bench-apa300ml/index.org][Amplified Piezoelectric Actuator APA300ML]] 5. Nano-Hexapod Struts 6. Nano-Hexapod 7. Nano-Hexapod on top of a Spindle * Notes - [[file:euspen_2020_notes/notes.org][EUSPEN - 2020 - Notes]] * Lectures - [[file:lecture-h-infinity/index.org][H-Infinity - Robust Control]]