

Nano Active Stabilization of samples for tomography experiments: A mechatronic design approach

PhD Thesis

By

Thomas Dehaeze

Supervisor: Christophe Collette

The European Synchrotron Radiation Facility (ESRF)

ID31 Beamline

Optical Hutch 1

Optical Hutch 2

Scientific Examples

ID31 Positioning Stage: The Micro Station

New Positioning Needs: From µm to nm

Nano Active Stabilization System (NASS) - Concept

Challenges for the design of the NASS

Outline - Design Strategy

Conceptual Design Development

Uniaxial Model

Rotating Model

Centrifugal Forces

Coriolis Effect

$$m\ddot{d}_{u} + c\dot{d}_{u} + (k - m\Omega^{2})d_{u} = F_{u} + 2m\Omega\dot{d}_{v}$$

$$m\ddot{d}_{v} + c\dot{d}_{v} + (k - m\Omega^{2})d_{v} = F_{v} - 2m\Omega\dot{d}_{u}$$

Regained unconditional IFF stability with k_p Stiff Active Platforms less impacted by Ω

T. Dehaeze and C. Collette.

"Active Damping of Rotating Platforms Using Integral Force Feedback". In Engineering Research Express 2021

Micro-Station – Modal Analysis

Micro-Station - Multi-Body Model

Multi-Body Model

Solid bodies connected
by springs and dampers

Simulink/Simscape Software

μ-Station Compliance Magnitude [rad/Nm] $^{-01}$ R_x/M_x - Measured R_x/M_x - Model R_y/M_y - Measured R_y/M_y - Model R_z/M_z - Measured R_z/M_z - Model Frequency [Hz] Magnitude [m/N] 200 Frequency [Hz]

Active Platform – The Gough-Stewart Platform

Control Architecture

Nano Active Stabilization System - Dynamics

Detail Design

Mechanical Architecture – Optimal Geometry?

Université Libre de Bruxelles

University of Wyoming

Cubic Architecture

Modified Cubic Architecture

The NASS needs to handle various payloads inertia

Struts	Vertically Oriented	Increased separation
Vertical stiffness	7	=
Horizontal stiffness	\searrow	=
Vertical rotation stiffness	\searrow	7
Horizontal rotation stiffness	7	7
Vertical mobility	¥	=
Horizontal mobility	7	=
Vertical rotation mobility	7	\searrow
Horizontal rotation mobility		7

Component Optimization – Hybrid Modeling

Choice of Actuators and Design of Flexible Joints

Specifications

Axial Stiffness $> 100 \text{ N/}\mu\text{m}$

Bending Stiffness < 100 Nm/rad

Torsion Stiffness < 500 Nm/rad

Bending Stroke > 1 mrad

Obtained Design - The "Nano Hexapod"

Sensor Fusion and Complementary Filters

Shaping of Complementary Filters

Synthesis Objective

$$H_1(s) + H_2(s) = 1$$
 $|H_1(j\omega)| \le \frac{1}{|W_1(j\omega)|} \quad \forall \omega$
 $|H_2(j\omega)| \le \frac{1}{|W_2(j\omega)|} \quad \forall \omega$

Mixed Sensitivity H-infinity Synthesis

$$S(s) + T(s) = 1$$

$$|S(j\omega)| \le \frac{1}{|W_S(j\omega)|} \quad \forall \omega$$

$$|T(j\omega)| \le \frac{1}{|W_T(j\omega)|} \quad \forall \omega$$

T. Dehaeze, M. Verma, and C. Collette.

"Complementary Filters Shaping Using H-Infinity Synthesis". In ICCMA 2019

Closed-Loop Shaping using Complementary Filters

Virtual Sensor Fusion

Nominal Stability

 H_H, H_L, G Stable

 H_H, G Minimum phase

Nominal Performance

Weighting Functions $\downarrow \\
| w_H(j\omega) H_H(j\omega) | \leq 1 \quad \forall \omega \\
| w_L(j\omega) H_L(j\omega) | \leq 1 \quad \forall \omega$

Robust Performance

 $|w_H(j\omega)S(j\omega)| \le 1 \quad \forall G' \in \Pi_I, \ \forall \omega$

 $|w_H(j\omega)H_H(j\omega)| + |w_I(j\omega)H_L(j\omega)| \le 1, \ \forall \omega$

Proposed Control Architecture

$$y = \frac{H_H dy + G'G^{-1}r - G'G^{-1}H_L n}{H_H + G'G^{-1}H_L}$$
$$u = \frac{-G^{-1}H_L dy + G^{-1}r - G^{-1}H_L n}{H_H + G'G^{-1}H_L}$$

 $G^{-1}G' \approx 1$

Analytical Formula

$$H_L(s) = \frac{1}{1 + s/\omega_0}$$

$$H_H(s) = \frac{s/\omega_0}{1 + s/\omega_0}$$

M. Verma, T. Dehaeze, G. Zhao, J. Watchi, and C. Collette.

"Virtual Sensor Fusion for High Precision Control". In MSSP 2020

Experimental Validation - Strategy

Amplified Piezoelectric Actuator – APA300ML

Flexible Joints – Measured Bending Stiffness

Nano Active Stabilization System – ID31

Short Stroke Metrology

$$\begin{bmatrix} D_x \\ D_y \\ D_z \\ R_x \\ R_y \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 & 0 & -l_2 & 0 \\ 0 & 1 & 0 & l_1 & 0 \\ -1 & 0 & 0 & 0 & -l_2 \\ -1 & 0 & 0 & 0 & l_1 \\ 0 & 0 & -1 & 0 & 0 \end{bmatrix}}_{I} \cdot \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_5 \end{bmatrix}$$

Plant Dynamics

Comparing the measurements with the model can help detect potential issues

Effect of Payload Mass

Effect of Rotational Velocity

Dynamics not affected by the rotation

Validates the control kinematics

Decentralized Integral Force Feedback (IFF)

$$m{K}_{ ext{IFF}} = K_{ ext{IFF}} \cdot m{I}_6 = egin{bmatrix} K_{ ext{IFF}} & 0 \ & \ddots \ 0 & K_{ ext{IFF}} \end{bmatrix}$$

$$\epsilon \mathcal{L}$$
 $K_{\text{IFF}} = g_0 \cdot \frac{1}{s} \cdot \frac{s^2/\omega_z^2}{s^2/\omega_z^2 + 2\xi_z s/\omega_z + 1}$

Modeling of dynamical coupling

Root Locus: Estimation of obtained damping

High Authority Controller (HAC)

$$K_{\text{HAC}}(s) = g_0 \cdot \underbrace{\frac{\omega_c}{s}}_{\text{int}} \cdot \underbrace{\frac{1}{1 + \frac{s}{\omega_0}}}_{\text{LPF}}$$

Tomography Experiments

Tomography Experiments – Robustness to Change of Payload

Lateral Scans

Closed-Loop Shaping with Complementary Filters

Conclusion

Goal

Improve the Micro-Station accuracy from $\approx 10 \mu m$ down to $\approx 100 nm$ without impacting the mobility and payload capability

Challenges

Predictive Design "Right the First Time"

Performance

Design of a rotating Experimental 6DoF Active Platform Validation

Control and Robustness

Conclusion

Validated Concept

Unique Positioning-Station:

High mobility / High Accuracy / 50kg payload capability New scientific oppotunities on ID31

"Robustness by design" Closed-Loop Shaping

Perspectives

Better addressing the change of Payload

Robust Control \mathcal{H}_{∞}/μ -synthesis

Linear Parameter-Varying (LPV)

Control

Automatic tuning after change of payload

Extend the design methodology to other high precision instruments and complete Beamlines

Acknowledgments

Christophe Collette
Loïc Salles
Olivier Bruls
Jonathan Kelly
Gérard Scorletti
Olivier Mathon

Veijo Honkimaki
Michael Krisch
Philippe Marion
Yves Dabin
Muriel Magnin-Mattenet
Julien Bonnefoy
Damien Coulon

Philipp Brumund
Marc Lesourd
Noel Levet
Pierrick Got
Kader Amraoui
Hans Peter van der Kleij
Ludovic Ducotte

Ahmad Mohit Jennifer Vicente Guoying Haidar

Thank You!