Version sent for printing the book
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
% Created 2025-07-09 Wed 19:41
|
||||
% Created 2025-07-15 Tue 13:58
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
||||
\documentclass[a4paper, twoside, headings=openright, 10pt, DIV=13, BCOR=1cm, parskip=full, bibliography=totoc]{scrreprt}
|
||||
|
||||
\input{config.tex}
|
||||
\newacronym{adc}{ADC}{Analog to Digital Converter}
|
||||
@@ -55,7 +55,7 @@
|
||||
\addbibresource{ref.bib}
|
||||
\addbibresource{phd-thesis.bib}
|
||||
\author{Dehaeze Thomas}
|
||||
\date{2025-07-09}
|
||||
\date{2025-07-15}
|
||||
\title{Nano Active Stabilization of samples for tomography experiments: A mechatronic design approach}
|
||||
\subtitle{PhD Thesis}
|
||||
\hypersetup{
|
||||
@@ -193,11 +193,15 @@ The organization of the code mirrors that of the manuscript, with corresponding
|
||||
All materials have been made available under the MIT License, permitting free reuse.
|
||||
|
||||
This approach represents a modest contribution towards a more open, reliable, and collaborative scientific ecosystem.
|
||||
\newpage
|
||||
\thispagestyle{empty}
|
||||
\vspace*{\fill}
|
||||
|
||||
The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
|
||||
\vspace*{\fill}
|
||||
|
||||
% \newpage
|
||||
% \thispagestyle{empty}
|
||||
% \vspace*{\fill}
|
||||
% The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
|
||||
% \vspace*{\fill}
|
||||
\clearpage
|
||||
\dominitoc
|
||||
\tableofcontents
|
||||
@@ -523,7 +527,7 @@ A more comprehensive review of actively controlled end-stations is provided in S
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,scale=0.9]{figs/introduction_stages_nazaretski.png}
|
||||
\end{center}
|
||||
\subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN - Microscope. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
|
||||
\subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:introduction_active_stations}Example of two end-stations with real-time position feedback based on an online metrology.}
|
||||
\end{figure}
|
||||
@@ -1346,7 +1350,7 @@ All three active damping methods give similar results.
|
||||
\end{center}
|
||||
\subcaption{\label{fig:uniaxial_cas_active_damping_stiff}$k_n = 100\,\text{N}/\upmu\text{m}$}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:uniaxial_cas_active_damping}Comparison of the \acrlong{cas} of the distance \(d\) for all three active damping techniques.}
|
||||
\caption{\label{fig:uniaxial_cas_active_damping}Comparison of the Cumulative Amplitude Spectrum of the distance \(d\) for all three active damping techniques.}
|
||||
\end{figure}
|
||||
\paragraph{Conclusion}
|
||||
Three active damping strategies have been studied for the \acrfull{nass}.
|
||||
@@ -2233,7 +2237,7 @@ For larger values of \(\omega_i\), the attainable damping ratio decreases as a f
|
||||
\end{center}
|
||||
\subcaption{\label{fig:rotating_iff_hpf_optimal_gain}Attainable damping ratio as a function of $\omega_i/\omega_0$. Maximum and optical control gains are also shown}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:rotating_iff_modified_effect_wi}Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as \(\omega_i\) increases (\subref{fig:rotating_iff_hpf_optimal_gain}).}
|
||||
\caption{\label{fig:rotating_iff_modified_effect_wi}Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). Achievable damping ratio decreases as \(\omega_i\) increases (\subref{fig:rotating_iff_hpf_optimal_gain}).}
|
||||
\end{figure}
|
||||
\paragraph{Obtained Damped Plant}
|
||||
To study how the parameter \(\omega_i\) affects the damped plant, the obtained damped plants for several \(\omega_i\) are compared in Figure~\ref{fig:rotating_iff_hpf_damped_plant_effect_wi_plant}.
|
||||
@@ -2438,7 +2442,7 @@ It does not increase the low-frequency coupling as compared to the Integral Forc
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}{0.49\linewidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,scale=0.8]{figs/rotating_rdc_root_locus.png}
|
||||
\includegraphics[scale=1,scale=0.9]{figs/rotating_rdc_root_locus.png}
|
||||
\end{center}
|
||||
\subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control}
|
||||
\end{subfigure}
|
||||
@@ -2651,7 +2655,7 @@ The gain is chosen such that 99\% of modal damping is obtained (obtained gains a
|
||||
\(100\,\text{N}/\upmu\text{m}\) & 80000 & 0.99\\
|
||||
\bottomrule
|
||||
\end{tabularx}}
|
||||
\captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the acrlong:rdc}
|
||||
\captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the RDC}
|
||||
\end{minipage}
|
||||
\paragraph{Comparison of the Obtained Damped Plants}
|
||||
Now that the optimal parameters for the three considered active damping techniques have been determined, the obtained damped plants are computed and compared in Figure~\ref{fig:rotating_nass_damped_plant_comp}.
|
||||
@@ -7451,7 +7455,7 @@ The sensor dynamics estimate \(\hat{G}_i(s)\) may be a simple gain or a more com
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,scale=1]{figs/detail_control_sensor_model.png}
|
||||
\end{center}
|
||||
\subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and acrshort:lti transfer function $G_i(s)$}
|
||||
\subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and LTI transfer function $G_i(s)$}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.48\textwidth}
|
||||
\begin{center}
|
||||
|
Reference in New Issue
Block a user