Version sent for printing the book

This commit is contained in:
2025-07-15 15:09:47 +02:00
parent 6930beb9bb
commit 60950797a2
5 changed files with 39 additions and 25 deletions

View File

@@ -1,6 +1,6 @@
% Created 2025-07-09 Wed 19:41
% Created 2025-07-15 Tue 13:58
% Intended LaTeX compiler: pdflatex
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
\documentclass[a4paper, twoside, headings=openright, 10pt, DIV=13, BCOR=1cm, parskip=full, bibliography=totoc]{scrreprt}
\input{config.tex}
\newacronym{adc}{ADC}{Analog to Digital Converter}
@@ -55,7 +55,7 @@
\addbibresource{ref.bib}
\addbibresource{phd-thesis.bib}
\author{Dehaeze Thomas}
\date{2025-07-09}
\date{2025-07-15}
\title{Nano Active Stabilization of samples for tomography experiments: A mechatronic design approach}
\subtitle{PhD Thesis}
\hypersetup{
@@ -193,11 +193,15 @@ The organization of the code mirrors that of the manuscript, with corresponding
All materials have been made available under the MIT License, permitting free reuse.
This approach represents a modest contribution towards a more open, reliable, and collaborative scientific ecosystem.
\newpage
\thispagestyle{empty}
\vspace*{\fill}
The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
\vspace*{\fill}
% \newpage
% \thispagestyle{empty}
% \vspace*{\fill}
% The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze.
% \vspace*{\fill}
\clearpage
\dominitoc
\tableofcontents
@@ -523,7 +527,7 @@ A more comprehensive review of actively controlled end-stations is provided in S
\begin{center}
\includegraphics[scale=1,scale=0.9]{figs/introduction_stages_nazaretski.png}
\end{center}
\subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN - Microscope. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
\subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}}
\end{subfigure}
\caption{\label{fig:introduction_active_stations}Example of two end-stations with real-time position feedback based on an online metrology.}
\end{figure}
@@ -1346,7 +1350,7 @@ All three active damping methods give similar results.
\end{center}
\subcaption{\label{fig:uniaxial_cas_active_damping_stiff}$k_n = 100\,\text{N}/\upmu\text{m}$}
\end{subfigure}
\caption{\label{fig:uniaxial_cas_active_damping}Comparison of the \acrlong{cas} of the distance \(d\) for all three active damping techniques.}
\caption{\label{fig:uniaxial_cas_active_damping}Comparison of the Cumulative Amplitude Spectrum of the distance \(d\) for all three active damping techniques.}
\end{figure}
\paragraph{Conclusion}
Three active damping strategies have been studied for the \acrfull{nass}.
@@ -2233,7 +2237,7 @@ For larger values of \(\omega_i\), the attainable damping ratio decreases as a f
\end{center}
\subcaption{\label{fig:rotating_iff_hpf_optimal_gain}Attainable damping ratio as a function of $\omega_i/\omega_0$. Maximum and optical control gains are also shown}
\end{subfigure}
\caption{\label{fig:rotating_iff_modified_effect_wi}Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as \(\omega_i\) increases (\subref{fig:rotating_iff_hpf_optimal_gain}).}
\caption{\label{fig:rotating_iff_modified_effect_wi}Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). Achievable damping ratio decreases as \(\omega_i\) increases (\subref{fig:rotating_iff_hpf_optimal_gain}).}
\end{figure}
\paragraph{Obtained Damped Plant}
To study how the parameter \(\omega_i\) affects the damped plant, the obtained damped plants for several \(\omega_i\) are compared in Figure~\ref{fig:rotating_iff_hpf_damped_plant_effect_wi_plant}.
@@ -2438,7 +2442,7 @@ It does not increase the low-frequency coupling as compared to the Integral Forc
\begin{figure}[htbp]
\begin{subfigure}{0.49\linewidth}
\begin{center}
\includegraphics[scale=1,scale=0.8]{figs/rotating_rdc_root_locus.png}
\includegraphics[scale=1,scale=0.9]{figs/rotating_rdc_root_locus.png}
\end{center}
\subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control}
\end{subfigure}
@@ -2651,7 +2655,7 @@ The gain is chosen such that 99\% of modal damping is obtained (obtained gains a
\(100\,\text{N}/\upmu\text{m}\) & 80000 & 0.99\\
\bottomrule
\end{tabularx}}
\captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the acrlong:rdc}
\captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the RDC}
\end{minipage}
\paragraph{Comparison of the Obtained Damped Plants}
Now that the optimal parameters for the three considered active damping techniques have been determined, the obtained damped plants are computed and compared in Figure~\ref{fig:rotating_nass_damped_plant_comp}.
@@ -7451,7 +7455,7 @@ The sensor dynamics estimate \(\hat{G}_i(s)\) may be a simple gain or a more com
\begin{center}
\includegraphics[scale=1,scale=1]{figs/detail_control_sensor_model.png}
\end{center}
\subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and acrshort:lti transfer function $G_i(s)$}
\subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and LTI transfer function $G_i(s)$}
\end{subfigure}
\begin{subfigure}{0.48\textwidth}
\begin{center}