diff --git a/config_extra.tex b/config_extra.tex index 813b33a..0583c54 100644 --- a/config_extra.tex +++ b/config_extra.tex @@ -26,6 +26,8 @@ \usepackage{floatrow} \floatsetup[table]{font={footnotesize,sf},capposition=top} + % \usepackage[bottom=2.5cm]{geometry} + \clubpenalty = 10000 \widowpenalty = 10000 \displaywidowpenalty = 10000 diff --git a/phd-thesis.org b/phd-thesis.org index b857e6e..1c5afde 100644 --- a/phd-thesis.org +++ b/phd-thesis.org @@ -10,8 +10,9 @@ #+DATE: {{{time(%Y-%m-%d)}}} #+LATEX_CLASS: scrreprt -#+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc] -# #+LATEX_CLASS_OPTIONS: [a4paper, twoside, 11pt, onecolumn, bibliography=totoc, openright, appendixprefix=true] +# #+LaTeX_CLASS_OPTIONS: [a4paper, twoside, headings=openright, 10pt, DIV=12, BCOR=1cm, parskip=full, bibliography=totoc, usegeometry] +#+LaTeX_CLASS_OPTIONS: [a4paper, twoside, headings=openright, 10pt, DIV=13, BCOR=1cm, parskip=full, bibliography=totoc] +# #+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc] #+OPTIONS: num:t toc:nil ':t *:t -:t ::t <:nil author:t date:t tags:nil todo:nil |:t H:5 title:nil @@ -276,12 +277,16 @@ This approach represents a modest contribution towards a more open, reliable, an * Grants :ignore: -#+begin_export latex -\newpage -\thispagestyle{empty} -\vspace*{\fill} +#+latex: \vspace*{\fill} + The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze. -\vspace*{\fill} + +#+begin_export latex +% \newpage +% \thispagestyle{empty} +% \vspace*{\fill} +% The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze. +% \vspace*{\fill} #+end_export * Table of Contents :ignore: @@ -649,7 +654,7 @@ A more comprehensive review of actively controlled end-stations is provided in S #+attr_latex: :width 0.95\linewidth [[file:figs/introduction_stages_villar.jpg]] #+end_subfigure -#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN - Microscope. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}} +#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :scale 0.9 @@ -1535,7 +1540,7 @@ The cumulative amplitude spectrum of the distance $d$ with all three active damp All three active damping methods give similar results. #+name: fig:uniaxial_cas_active_damping -#+caption: Comparison of the acrlong:cas of the distance $d$ for all three active damping techniques. +#+caption: Comparison of the Cumulative Amplitude Spectrum of the distance $d$ for all three active damping techniques. #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:uniaxial_cas_active_damping_soft}$k_n = 0.01\,\text{N}/\upmu\text{m}$} @@ -2487,7 +2492,7 @@ For small values of $\omega_i$, the added damping is limited by the maximum allo For larger values of $\omega_i$, the attainable damping ratio decreases as a function of $\omega_i$ as was predicted from the root locus plot of Figure\nbsp{}ref:fig:rotating_iff_root_locus_hpf_large. #+name: fig:rotating_iff_modified_effect_wi -#+caption: Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as $\omega_i$ increases (\subref{fig:rotating_iff_hpf_optimal_gain}). +#+caption: Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). Achievable damping ratio decreases as $\omega_i$ increases (\subref{fig:rotating_iff_hpf_optimal_gain}). #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:rotating_root_locus_iff_modified_effect_wi}Root locus} @@ -2727,7 +2732,7 @@ It does not increase the low-frequency coupling as compared to the Integral Forc #+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control} #+attr_latex: :options {0.49\linewidth} #+begin_subfigure -#+attr_latex: :scale 0.8 +#+attr_latex: :scale 0.9 [[file:figs/rotating_rdc_root_locus.png]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:rotating_rdc_damped_plant}Damped plant using Relative Damping Control} @@ -2949,7 +2954,7 @@ The gain is chosen such that 99% of modal damping is obtained (obtained gains ar | $0.01\,\text{N}/\upmu\text{m}$ | 1600 | 0.99 | | $1\,\text{N}/\upmu\text{m}$ | 8200 | 0.99 | | $100\,\text{N}/\upmu\text{m}$ | 80000 | 0.99 | -#+latex: \captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the acrlong:rdc} +#+latex: \captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the RDC} #+end_minipage ***** Comparison of the Obtained Damped Plants @@ -8055,7 +8060,7 @@ The sensor dynamics estimate $\hat{G}_i(s)$ may be a simple gain or a more compl #+caption: Sensor models with and without normalization. #+attr_latex: :options [htbp] #+begin_figure -#+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and acrshort:lti transfer function $G_i(s)$} +#+attr_latex: :caption \subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and LTI transfer function $G_i(s)$} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :scale 1 diff --git a/phd-thesis.pdf b/phd-thesis.pdf index 63a4392..4d10556 100644 Binary files a/phd-thesis.pdf and b/phd-thesis.pdf differ diff --git a/phd-thesis.tex b/phd-thesis.tex index f44394d..9c07429 100644 --- a/phd-thesis.tex +++ b/phd-thesis.tex @@ -1,6 +1,6 @@ -% Created 2025-07-09 Wed 19:41 +% Created 2025-07-15 Tue 13:58 % Intended LaTeX compiler: pdflatex -\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt} +\documentclass[a4paper, twoside, headings=openright, 10pt, DIV=13, BCOR=1cm, parskip=full, bibliography=totoc]{scrreprt} \input{config.tex} \newacronym{adc}{ADC}{Analog to Digital Converter} @@ -55,7 +55,7 @@ \addbibresource{ref.bib} \addbibresource{phd-thesis.bib} \author{Dehaeze Thomas} -\date{2025-07-09} +\date{2025-07-15} \title{Nano Active Stabilization of samples for tomography experiments: A mechatronic design approach} \subtitle{PhD Thesis} \hypersetup{ @@ -193,11 +193,15 @@ The organization of the code mirrors that of the manuscript, with corresponding All materials have been made available under the MIT License, permitting free reuse. This approach represents a modest contribution towards a more open, reliable, and collaborative scientific ecosystem. -\newpage -\thispagestyle{empty} \vspace*{\fill} + The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze. -\vspace*{\fill} + +% \newpage +% \thispagestyle{empty} +% \vspace*{\fill} +% The research presented in this manuscript has been possible thanks to the Fonds de la recherche scientifique (FRS-FNRS) through a FRIA grant given to Thomas Dehaeze. +% \vspace*{\fill} \clearpage \dominitoc \tableofcontents @@ -523,7 +527,7 @@ A more comprehensive review of actively controlled end-stations is provided in S \begin{center} \includegraphics[scale=1,scale=0.9]{figs/introduction_stages_nazaretski.png} \end{center} -\subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN - Microscope. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}} +\subcaption{\label{fig:introduction_stages_nazaretski} NSLS-II HXN. 1 and 2 are focusing optics, 3 is the sample location, 4 the sample stage and 5 the interferometers \cite{nazaretski17_desig_perfor_x_ray_scann}} \end{subfigure} \caption{\label{fig:introduction_active_stations}Example of two end-stations with real-time position feedback based on an online metrology.} \end{figure} @@ -1346,7 +1350,7 @@ All three active damping methods give similar results. \end{center} \subcaption{\label{fig:uniaxial_cas_active_damping_stiff}$k_n = 100\,\text{N}/\upmu\text{m}$} \end{subfigure} -\caption{\label{fig:uniaxial_cas_active_damping}Comparison of the \acrlong{cas} of the distance \(d\) for all three active damping techniques.} +\caption{\label{fig:uniaxial_cas_active_damping}Comparison of the Cumulative Amplitude Spectrum of the distance \(d\) for all three active damping techniques.} \end{figure} \paragraph{Conclusion} Three active damping strategies have been studied for the \acrfull{nass}. @@ -2233,7 +2237,7 @@ For larger values of \(\omega_i\), the attainable damping ratio decreases as a f \end{center} \subcaption{\label{fig:rotating_iff_hpf_optimal_gain}Attainable damping ratio as a function of $\omega_i/\omega_0$. Maximum and optical control gains are also shown} \end{subfigure} -\caption{\label{fig:rotating_iff_modified_effect_wi}Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as \(\omega_i\) increases (\subref{fig:rotating_iff_hpf_optimal_gain}).} +\caption{\label{fig:rotating_iff_modified_effect_wi}Root loci for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). Achievable damping ratio decreases as \(\omega_i\) increases (\subref{fig:rotating_iff_hpf_optimal_gain}).} \end{figure} \paragraph{Obtained Damped Plant} To study how the parameter \(\omega_i\) affects the damped plant, the obtained damped plants for several \(\omega_i\) are compared in Figure~\ref{fig:rotating_iff_hpf_damped_plant_effect_wi_plant}. @@ -2438,7 +2442,7 @@ It does not increase the low-frequency coupling as compared to the Integral Forc \begin{figure}[htbp] \begin{subfigure}{0.49\linewidth} \begin{center} -\includegraphics[scale=1,scale=0.8]{figs/rotating_rdc_root_locus.png} +\includegraphics[scale=1,scale=0.9]{figs/rotating_rdc_root_locus.png} \end{center} \subcaption{\label{fig:rotating_rdc_root_locus}Root locus for Relative Damping Control} \end{subfigure} @@ -2651,7 +2655,7 @@ The gain is chosen such that 99\% of modal damping is obtained (obtained gains a \(100\,\text{N}/\upmu\text{m}\) & 80000 & 0.99\\ \bottomrule \end{tabularx}} -\captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the acrlong:rdc} +\captionof{table}{\label{tab:rotating_rdc_opt_params_nass}Obtained optimal parameters for the RDC} \end{minipage} \paragraph{Comparison of the Obtained Damped Plants} Now that the optimal parameters for the three considered active damping techniques have been determined, the obtained damped plants are computed and compared in Figure~\ref{fig:rotating_nass_damped_plant_comp}. @@ -7451,7 +7455,7 @@ The sensor dynamics estimate \(\hat{G}_i(s)\) may be a simple gain or a more com \begin{center} \includegraphics[scale=1,scale=1]{figs/detail_control_sensor_model.png} \end{center} -\subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and acrshort:lti transfer function $G_i(s)$} +\subcaption{\label{fig:detail_control_sensor_model}Model with noise $n_i$ and LTI transfer function $G_i(s)$} \end{subfigure} \begin{subfigure}{0.48\textwidth} \begin{center} diff --git a/setup.org b/setup.org index ec07302..1eb79f1 100644 --- a/setup.org +++ b/setup.org @@ -125,6 +125,9 @@ I reduce the size of tables so that longer tables can still fit into an A4 (redu ** Geometry # \usepackage[paperheight=24.41cm,paperwidth=17.21cm,bottom=3cm,left=1.4cm,right=2cm,heightrounded]{geometry} +#+begin_src latex + % \usepackage[bottom=2.5cm]{geometry} +#+end_src ** Penalties #+begin_src latex